Egyetemi tanrend

*Tanrendi kereső

Kérjük, írja be a keresett adat (kurzuskód címe, kódja, oktató, tanszék, szak vagy képzési program neve) első betűit.

Részletes keresési feltételek

Felfed / Elrejt

Tanterv

Képzési program:
Kód:
M507_L
Képzési forma:
Kiegészítő alapképzés
Tagozat:
Levelező
Kredit:
180 kredit
Félév:
6
Leírás:
A képzési terv eloírásai azokra vonatkoznak, akik foiskolai matematika tanárszakos oklevéllel rendelkeznek. Amennyiben valaki ilyennel nem rendelkezik, más tárgyak tejesítésére is kötelezheto.
Speciális:
nem párosítható, tanári
További információk:
Dátum:
2013.10.22 16:24:59
Felvételi követelmények:
középiskola
Továbbtanulási lehetõségek:
PhD/DLA
Értékelési rendszer:
TT / KPR TE Megnevezés Szemeszter
0123456
MK1-TA Kötelező természettudományos alapozó; Teljesítendő: min.7 kredit
kötelező tantárgy ILNFA-10 Informatika; Teljesítendő: min. 7 kredit
kötelező tantárgy kötelező tárgyeleme ILNFA-10e Informatika; _Előadás, 10 óra, _Kollokvium, párhuzamosan felveendőILNFA-10g 7
kötelező tantárgy kötelező tárgyeleme ILNFA-10g Informatika gyakorlat; _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőILNFA-10e 0
MK2-KAS Kötelező matematika alapozó tárgy; Teljesítendő: min.67 kredit
kötelező tantárgy ML1331 Komplex függvénytan (lev.); Teljesítendő: min. 8 kredit
kötelező tantárgy kötelező tárgyeleme ML1331e Komplex függvénytan (lev.); _Előadás, 14 óra, _Kollokvium, párhuzamosan felveendőML1331g 8
kötelező tantárgy kötelező tárgyeleme ML1331g Komplex függvénytan (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1331e 0
kötelező tantárgy ML1411 Valós függvénytan (lev.); Teljesítendő: min. 7 kredit
kötelező tantárgy kötelező tárgyeleme ML1411 Valós függvénytan (lev.); _Előadás, 20 óra, _Kollokvium 7
kötelező tantárgy ML1451 Valószínűségszámítás (lev.); Teljesítendő: min. 8 kredit
kötelező tantárgy kötelező tárgyeleme ML1451e Valószínűségszámítás (lev.); _Előadás, 14 óra, _Kollokvium, párhuzamosan felveendőML1451g 8
kötelező tantárgy kötelező tárgyeleme ML1451g Valószínűségszámítás (lev.); _Gyakorlat, 8 óra, _Aláírás, párhuzamosan felveendőML1451e 0
kötelező tantárgy ML1471 Halmazelmélet és matematikai logika (lev.); Teljesítendő: min. 10 kredit
kötelező tantárgy kötelező tárgyeleme ML1471e Halmazelmélet és matematikai logika (lev.); _Előadás, 20 óra, _Kollokvium, párhuzamosan felveendőML1471g 10
kötelező tantárgy kötelező tárgyeleme ML1471g Halmazelmélet és matematikai logika (lev.); _Gyakorlat, 8 óra, _Aláírás, párhuzamosan felveendőML1471e 0
kötelező tantárgy ML1391 Absztrakt algebra (lev.); Teljesítendő: min. 10 kredit kurzusfelvétel előfeltételeML1311
kötelező tantárgy kötelező tárgyeleme ML1391e Absztrakt algebra (lev.); _Előadás, 20 óra, _Kollokvium, párhuzamosan felveendőML1391g 10
kötelező tantárgy kötelező tárgyeleme ML1391g Absztrakt algebra (lev.); _Gyakorlat, 12 óra, _Aláírás, párhuzamosan felveendőML1391e 0
kötelező tantárgy ML1351 Projektív geometria (lev.); Teljesítendő: min. 8 kredit
kötelező tantárgy kötelező tárgyeleme ML1351e Projektív geometria (lev.); _Előadás, 14 óra, _Kollokvium, párhuzamosan felveendőML1351g 8
kötelező tantárgy kötelező tárgyeleme ML1351g Projektív geometria (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1351e 0
kötelező tantárgy ML1431 Differenciálgeometria és komputergeometria (lev.); Teljesítendő: min. 8 kredit
kötelező tantárgy kötelező tárgyeleme ML1431e Differenciálgeometria és komputergeometria (lev.); _Előadás, 14 óra, _Kollokvium, párhuzamosan felveendőML1431g 8
kötelező tantárgy kötelező tárgyeleme ML1431g Differenciálgeometria és komputergeometria (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1431e 0
kötelező tantárgy ML1311 Algebra és számelmélet (lev.); Teljesítendő: min. 8 kredit
kötelező tantárgy kötelező tárgyeleme ML1311e Algebra és számelmélet (lev.); _Előadás, 14 óra, _Kollokvium, párhuzamosan felveendőML1311g 8
kötelező tantárgy kötelező tárgyeleme ML1311g Algebra és számelmélet (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1311e 0
MK3-KTS Kötelező további szakmai tárgy; Teljesítendő: min.12 kredit
kötelező tantárgy ML1492 Elemi matematika I. (lev.); Teljesítendő: min. 2 kredit
kötelező tantárgy kötelező tárgyeleme ML1492 Elemi matematika I. (lev.); _Gyakorlat, 8 óra, _Gyakorlati jegy 2
kötelező tantárgy ML1571 Elemi matematika II. (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1492
kötelező tantárgy kötelező tárgyeleme ML1571 Elemi matematika II. (lev.); _Gyakorlat, 8 óra, _Gyakorlati jegy 2
kötelező tantárgy ML1572 Elemi matematika III. (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1571
kötelező tantárgy kötelező tárgyeleme ML1572 Elemi matematika III. (lev.); _Gyakorlat, 8 óra, _Gyakorlati jegy 2
kötelező tantárgy ML1752 Elemi matematika IV. (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1572
kötelező tantárgy kötelező tárgyeleme ML1752 Elemi matematika IV. (lev.); _Gyakorlat, 10 óra, _Gyakorlati jegy 2
kötelező tantárgy ML1691 Fejezetek a matematika kultúrtörténetéből (lev.); Teljesítendő: min. 4 kredit
kötelező tantárgy kötelező tárgyeleme ML1691 Fejezetek a matematika kultúrtörténetéből (lev.); _Előadás, 14 óra, _Kollokvium 4
MK4-TM Tanári mesterség; Teljesítendő: min.15 kredit
kötelező tantárgy ML1551 Matematika tanítása I. (lev.); Teljesítendő: min. 6 kredit
kötelező tantárgy kötelező tárgyeleme ML1551e Matematika tanítása I. (lev.); _Előadás, 10 óra, _Kollokvium, párhuzamosan felveendőML1551g 6
kötelező tantárgy kötelező tárgyeleme ML1551g Matematika tanítása I. (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1551e 0
kötelező tantárgy ML1651 Matematika tanítása II. (lev.); Teljesítendő: min. 6 kredit kurzusfelvétel előfeltételeML1551
kötelező tantárgy kötelező tárgyeleme ML1651e Matematika tanítása II. (lev.); _Előadás, 10 óra, _Kollokvium, párhuzamosan felveendőML1651g, párhuzamosan felveendőML9201 6
kötelező tantárgy kötelező tárgyeleme ML1651g Matematika tanítása II. (lev.); _Gyakorlat, 10 óra, _Aláírás, párhuzamosan felveendőML1651e 0
kötelező tantárgy ML7202 Szakmódszertani szeminárium (matematika) (lev.); Teljesítendő: min. 1 kredit kurzusfelvétel előfeltételeML1651
kötelező tantárgy kötelező tárgyeleme ML7202 Szakmódszertani szeminárium (matematika) (lev.); _Gyakorlat, 5 óra, _Gyakorlati jegy 1
kötelező tantárgy ML9201 Szakmai iskolai megfigyelés (matematika) (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1551
kötelező tantárgy kötelező tárgyeleme ML9201 Szakmai iskolai megfigyelés (matematika) (lev.); _Gyakorlat, 10 óra, _Gyakorlati jegy, párhuzamosan felveendőML1651e, párhuzamosan felveendőML1651g 2
MK5-TT További természettudományos tárgyak; Teljesítendő: min.5 kredit
kötelező tantárgy ILNFA-20 Informatika II.; Teljesítendő: min. 5 kredit
kötelező tantárgy kötelező tárgyeleme ILNFA-20e Informatika II.; _Előadás, 14 óra, _Kollokvium 5
MK6-KVS Kötelezően választható matematika tárgyak; Teljesítendő: min.36 kredit
TT / KPR TE Megnevezés Szemeszter
0123456
al Algebra modul; Teljesítendő: min.12 kredit
kötelezően választható tantárgy ML5311 A számfogalom felépítése (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1391
kötelezően választható tantárgy kötelező tárgyeleme ML5311 A számfogalom felépítése (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5331 Számelméleti feladatok a középiskolában (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML5331 Számelméleti feladatok a középiskolában (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5351 Az aritmetika és a számelmélet fejlődése az ókortól Hilbert 7. problémájáig (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML5351 Az aritmetika és a számelmélet fejlődése az ókortól Hilbert 7. problémájáig (lev; _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6411 Játékelmélet (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6411 Játékelmélet (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6431 Diszkrét matematikai játékok (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1391
kötelezően választható tantárgy kötelező tárgyeleme ML6431 Diszkrét matematikai játékok (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5361 Számelmélet (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML5361e Számelmélet (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy MML018 Boole-függvények; Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme MML018E Boole-függvények; _Előadás, 14 óra, _Kollokvium 4
an Analízis modul; Teljesítendő: min.12 kredit
kötelezően választható tantárgy ML5411 Differenciálegyenletek a középiskolában I. (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1331, kurzusfelvétel előfeltételeML1411
kötelezően választható tantárgy kötelező tárgyeleme ML5411 Differenciálegyenletek a középiskolában I. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5431 Differenciálegyenletek a középiskolában II. (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML5411
kötelezően választható tantárgy kötelező tárgyeleme ML5431 Differenciálegyenletek a középiskolában II. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5451 Nevezetes numerikus sorok (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1331, kurzusfelvétel előfeltételeML1411
kötelezően választható tantárgy kötelező tárgyeleme ML5451 Nevezetes numerikus sorok (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6921 Egyenlőtlenségek középiskolai alkalmazásokkal II. (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6921 Egyenlőtlenségek középiskolai alkalmazásokkal II. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6961 Egyenlőtlenségek középiskolai alkalmazásokkal III. (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6961 Egyenlőtlenségek középiskolai alkalmazásokkal III. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6971 Problémamegoldási stratégiák a matematikában I. (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1391, kurzusfelvétel előfeltételeML1351
kötelezően választható tantárgy kötelező tárgyeleme ML6971 Problémamegoldási stratégiák a matematikában I. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6991 Problémamegoldási stratégiák a matematikában II. (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6991 Problémamegoldási stratégiák a matematikában II. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6901 Egyenlőtlenségek középiskolai alkalmazásokkal I. (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6901 Egyenlőtlenségek középiskolai alkalmazásokkal I. (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6212 Elemi analízis példákban és feladatokban; Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6212 Elemi analízis példákban és feladatokban; _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy MML021 Az analízis módszereinek alkalmazása a matematika egyéb területein; Teljesítendő: min. 3 kredit
kötelezően választható tantárgy kötelező tárgyeleme MML021E Az analízis módszereinek alkalmazása a matematika egyéb területein; _Előadás, 10 óra, _Kollokvium 3
kötelezően választható tantárgy ML5210 Fourier-sorok; Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML5210e Fourier-sorok; _Előadás, 14 óra, _Kollokvium 4
ge Geometria modul; Teljesítendő: min.12 kredit
kötelezően választható tantárgy ML5811 Véges geometria (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1351
kötelezően választható tantárgy kötelező tárgyeleme ML5811 Véges geometria (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5831 Algoritmikus geometria (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML5831 Algoritmikus geometria (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML5871 Transzformációcsoportok (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1351
kötelezően választható tantárgy kötelező tárgyeleme ML5871 Transzformációcsoportok (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6751 Geometriák és modelljeik (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1351, kurzusfelvétel előfeltételeML1431
kötelezően választható tantárgy kötelező tárgyeleme ML6751 Geometriák és modelljeik (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6771 A Bolyai-geometria axiomatikus megalapozása (lev.); Teljesítendő: min. 4 kredit kurzusfelvétel előfeltételeML1431
kötelezően választható tantárgy kötelező tárgyeleme ML6771 A Bolyai-geometria axiomatikus megalapozása (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML6811 Szemléletes topológia (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML6811 Szemléletes topológia (lev.); _Előadás, 14 óra, _Kollokvium 4
kötelezően választható tantárgy ML3307 Integrálgeometria (lev.); Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML3307 Integrálgeometria (lev.); _Előadás, 10 óra, _Kollokvium, párhuzamosan felveendőML3308 3
kötelezően választható tantárgy kötelező tárgyeleme ML3308 Integrálgeometria gyak. (lev.); _Gyakorlat, 5 óra, _Gyakorlati jegy, párhuzamosan felveendőML3307 1
kötelezően választható tantárgy ML3301 Algebrai görbék (lev.); Teljesítendő: min. 3 kredit
kötelezően választható tantárgy kötelező tárgyeleme ML3301 Algebrai görbék (lev.); _Előadás, 10 óra, _Kollokvium 3
kötelezően választható tantárgy MML097 Hiperbolikus geometria; Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme MML097E Hiperbolikus geometria; _Előadás, 12 óra, _Kollokvium 4
kötelezően választható tantárgy szabadon választható tárgyeleme MML097G Hiperbolikus geometria; _Gyakorlat, 4 óra, _Aláírás 0
kötelezően választható tantárgy MML001 A gráfelmélet elemei; Teljesítendő: min. 4 kredit
kötelezően választható tantárgy kötelező tárgyeleme MML001E A gráfelmélet elemei; _Előadás, 12 óra, _Kollokvium 4
kötelezően választható tantárgy kötelező tárgyeleme MML001G A gráfelmélet elemei; _Gyakorlat, 4 óra, _Aláírás 0
MK7-SZ Szigorlatok; Teljesítendő: min.6 kredit
kötelező tantárgy ML451 Analízis szigorlat (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1331, kurzusfelvétel előfeltételeML1411
kötelező tantárgy kötelező tárgyeleme ML451 Analízis szigorlat (lev.); _Önálló vizsga, 0 óra, _Szigorlat 2
kötelező tantárgy ML453 Algebra szigorlat (lev.); Teljesítendő: min. 2 kredit
kötelező tantárgy kötelező tárgyeleme ML453 Algebra szigorlat (lev.); _Önálló vizsga, 0 óra, _Szigorlat, párhuzamosan felveendőML1391e 2
kötelező tantárgy ML455 Geometria szigorlat (lev.); Teljesítendő: min. 2 kredit kurzusfelvétel előfeltételeML1351, kurzusfelvétel előfeltételeML1431
kötelező tantárgy kötelező tárgyeleme ML455 Geometria szigorlat (lev.); _Önálló vizsga, 0 óra, _Szigorlat 2
MK8-SZD Szakdolgozat; Teljesítendő: min.20 kredit
kötelező tantárgy ML177 Szakdolgozat (lev.); Teljesítendő: min. 20 kredit kurzusfelvétel előfeltételeML451, kurzusfelvétel előfeltételeML453, kurzusfelvétel előfeltételeML455
kötelező tantárgy kötelező tárgyeleme ML177 Szakdolgozat (lev.); _Gyakorlat, 20 óra, _Gyakorlati jegy 20
MK9-ZV Záróvizsga; Teljesítendő: min.0 kredit
kötelező tantárgy ML0051 Záróvizsga (lev.); Teljesítendő: min. 0 kredit kurzusfelvétel előfeltételeML177
kötelező tantárgy kötelező tárgyeleme ML0051 Záróvizsga (lev.); _Önálló vizsga, 0 óra, Záró (állam) vizsga 0
Jelmagyarázat: MK - mérföldko; TT/KPR - tantárgy vagy becsatolt képzési program; TE, Tantárgyelem - tantárgy tárgyeleme; - kötelező; - kötelezően választható, - szabadon választható; Tárgyelemeknél az ikon színe a tantárgy kötelezőségét jelzi, a beleírt betű pedig a tárgyelem tantárgyon belüli kötelezőségét; : ismételten felvehető; - kurzusfelvétel előfeltétele; - párhuzamosan felveendő; - vizsga előfeltétele; 0,1,... - ajánlott félév(ek) és kredit; k: kreditpontok

Mérföldkő-struktúra

Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 1
A mérföldkő tárgyaiból min.7 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 8
A mérföldkő tárgyaiból min.67 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 5
A mérföldkő tárgyaiból min.12 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 4
A mérföldkő tárgyaiból min.15 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 1
A mérföldkő tárgyaiból min.5 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
A mérföldkő tárgyaiból és a beágyazott mérföldkövek tárgyaiból min.36 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
A mérföldkő tárgyaiból min.12 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
A mérföldkő tárgyaiból min.12 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
A mérföldkő tárgyaiból min.12 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 3
A mérföldkő tárgyaiból min.6 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 1
A mérföldkő tárgyaiból min.20 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.
Mérföldkő teljesítése kötelező.
Kötelező tantárgyak száma 1
A mérföldkő tárgyaiból min.0 kredit összegyüjtése.
A kötelező tantárgyak teljesítése.

Szakterületi tárgyak részletes felsorolása

INF_L Informatika levelező tárgyak modul
Felelős tanszék:
Informatikai Tanszékcsoport
Felelős oktató:
Holló Csaba Dr. (HOCHAAS.SZE)
Teljesítendő:
min.7 kredit
_Előadás, kötelező, 10 óra / 7 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Informatikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Informatikai Tanszékcsoport
Felelős tanszék:
Informatikai Tanszékcsoport
Teljesítendő:
min.5 kredit
_Előadás, kötelező, 14 óra / 5 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 4. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Informatikai Tanszékcsoport
ML-Lev Matematika tanárszak levelező tárgyak modul
Felelős tanszék:
Matematikai Tanszékcsoport
_Önálló vizsga, kötelező,
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
Záró (állam) vizsga
Javasolt felvétele:
a képzés 6. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Klukovits Lajos Dr. (KLLHAES.SZE)
Teljesítendő:
min.8 kredit
Leírás:
Tematika

Gyűrűelméleti homomorfiatétel és izomorfiatételek. Faktorgyűrű részgyűrűi. Gyűrűk direkt szorzata, a maradékosztálygyűrűk direkt fölbontása. Egyszerű gyűrűk, a főideálgyűrűk faktortestei. Irreducibilis és prímelemek integritástartományokban, egyértelmű irreducibilis faktorizáció.
A modulo $m$ kongruencia és tulajdonságai, maradékosztályok. Lineáris kongruenciák, a kínai maradéktétel. Teljes és redukált maradékrendszerek. Euler, Fermat és Wilson tétele, oszthatósági tesztek.
Multiplikatív számelméleti függvények, nevezetek példák: az osztók száma, az osztók összege, a Möbius-függvény, az Euler-függvény. Számelméleti függvények konvolúciója. Számelméleti függvények összegzési és megfordítási függvénye, a Möbius-féle megfordítási képlet.
Primitív gyökök és indexek. Négyzetes maradékok, Legendre-szimbólum. A Dirichlet-tétel és néhány speciális esete. A természetes számok fölbontása két négyzetszám összegére. Pitagoraszi számhármasok. A Waring-problémakör, a Fermat-sejtés.
A prímszámok eloszlása: a prímszámok reciprokainak sora divergens; nevezetes becslések a prímszámok számára, a nagy prímszámtétel (ismertetés).
A főiskolai diploma alapján ismertnek föltételezett anyag:
Természetes számok, teljes indukció. Algebrai kifejezések, nevezetes szorzatok Az oszthatóság tulajdonságai, maradékos osztás és euklideszi algoritmus az egész számok körében. A legnagyobb közös osztó és a legkisebb közös többszörös. Lineáris diofantoszi egyenletek. A számelmélet alaptétele. Végtelen sok prímszám van.
A gyűrű definíciója, nevezetes példák. Ideál, ideál szerinti osztályozás, faktorgyűrű.

Ajánlott irodalom

1. Freud Róbert, Gyarmati Edit: Számelmélet, Nemzeti Tankönyvkiadó, 2000.
2. Gyarmati Edit, Turán Pál: Számelmélet, ELTE jegyzet, Tankönyvkiadó, 1975.
3. Megyesi László: Bevezetés a számelméletbe, Polygon, 1997.
4. I. Niven, H. S. Zuckerman: Bevezetés a számelméletbe, Műszaki Könyvkiadó, 1978.
5. Sárközi András, Surányi János: Számelmélet feladatgyűjtemény, ELTE jegyzet, Tankönyvkiadó, 1977.
6. Schmidt Tamás: Algebra, Nemzeti Tankönyvkiadó, 1993.
7. Szendrei Ágnes: Diszkrét matematika, Polygon könyvtár, 1994, 1996, 1998, 2000, 2002.
8. Szendrei János, Algebra és számelmélet, Tankönyvkiadó, 1975, 1993, a főiskolán tanultak átismétléséhez.
_Előadás, kötelező, 14 óra / 8 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Leindler László Dr. (LELHAAS.SZE)
Teljesítendő:
min.8 kredit
Leírás:
Tematika

Hatványsorok, exponenciális függvény, törtlineáris leképezések.
Cauchy integráltétele, integrálformula, Morera tétele, hatványsorfejtés.
Zéróhelyek: izoláltság, faktorizáció, Jensen formula.
Liouville tétel, Maximum tétel, Az algebra alaptétele, egyenletesen konvergens sorozatok.
Nyílt leképezések tétele, az inverz függvény analítikussága.
Izolált szinguláris helyek osztályozása, Laurent sorfejtés.
Reziduum tétel, alkalmazás valós integrál meghatározására, logaritmikus differenciálhányados, Rouché tétele.
Harmonikus függvények, a Cauchy-Riemann egyenletek, Poisson integrál, középérték tétel, Schwarz-féle tükrözés.
Schwarz lemma, az egységkörlap injektív, analitikus leképezései.
Runge tétele, Mittag-Leffler tétel.
Vitali-Montel tétel, Riemann konformis leképezések tétele.

Ajánlott irodalom

1. W. Rudin: Real and complex analysis, McGraw Hill Book Co, New York, 1966.
2. J.B. Conway: Functions of one complex variable, Springer Verlag, New York, 1984.
3. Szőkefalvi-Nagy Béla: Komplex függvénytan, Tankönyvkiadó, 1988.
_Előadás, kötelező, 14 óra / 8 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Nagy Gábor Péter Dr. (NAGHABS.SZE)
Teljesítendő:
min.8 kredit
Leírás:
Tematika

Az euklideszi sík kibővítése ideális elemekkel. Homogén koordináták. Egyenes egyenlete. Papposz és Desargues záródási tétele. Kettősviszony az euklideszi és projektiv síkon. Harmonikus pontnégyes. Másodrendű görbék végtelen távoli pontjai. Konjugáltság, pólus, poláris. Elfajuló másodrendű görbék. Közönséges másodrendű görbék osztályozása. A komplex projektiv egyenes, komplex kettősviszony. Inverziv sík. Törtlineáris és konjugált törtlineáris leképezések és körtartó transzformációk. Az egységkörlemezt és a félsíkot invariánsan hagyó irányítástartó körtartó transzformációk. A hiperbolikus sík Poincare modellje. A távolságképlet. Az irányítástartó hiperbolikus egybevágóságok osztályozása.

Ajánlott irodalom

1. Hajós György, Bevezetés a geometriába, Tankönyvkiadó, Budapest, 1960.
2. Szőkefalvi-Nagy Béla: Komplex függvénytan, Jegyzet Tankönyvkiadó, Budapest, 1989.
_Előadás, kötelező, 14 óra / 8 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 1. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Klukovits Lajos Dr. (KLLHAES.SZE)
Teljesítendő:
min.10 kredit
Leírás:
Tematika

Véges halmazok permutációi.
Absztrakt algebrai alapfogalmak: művelet, algebra, részalgebra, generátorrendszer, homomorfizmus, izomorfizmus, kongruencia, kompatibilis osztályozás, faktoralgebra. Homomorfiatétel. Izomorfiatételek. Direkt szorzat.
Cayley tétele csoportokra. Hatványozás csoportban, az elemrend definíciója és tulajdonságai. Generátorrendszer, ciklikus csoportok.
Részcsoport szerinti mellékosztályozás, Lagrange tétele. Normálosztó, normálosztó szerinti mellékosztályozás, faktorcsoport, csoportelméleti homomorfiatétel és izomorfiatételek. Faktorcsoport részcsoportjai.
Egyszerű csoportok, az alternáló csoportok egyszerűsége.
Csoportok direkt szorzata, direkt fölbontása; a véges Abel-csoportok alaptétele.
Konjugáltsági reláció, osztályegyenlet. Véges csoportok, Sylow-tételek, kis elemszámú csoportok.
Feloldható csoportok, részcsoportjaik és faktorcsoportjaik.
Test karakterisztikája, prímteste. Egyszerű algebrai és egyszerű transzcendens testbővítés, minimálpolinom, végesfokú testbővítés. Polinom felbontási teste, normális testbővítés. Testbővítés ill. polinom Galois-csoportja. Magasabbfokú algebrai egyenletek megoldhatósága gyökjelekkel. Geometriai szerkeszthetőség, nevezetes szerkesztési feladatok.
Részbenrendezések. Hálók és hálószerűen rendezett halmazok. Disztributív és moduláris hálók, nevezetes példák. Boole-algebrák.
A főiskolai diploma alapján ismertnek föltételezett anyag:
A csoportok ekvivalens definíciói, az asszociativitás és az invertálhatóság következményei; nevezetes példák. Részcsoport, izomorfizmus, homomorfizmus.

Ajánlott irodalom

1. Bálintné Szendrei Mária, Czédli Gábor, Szendrei Ágnes: Absztrakt algebrai feladatok, Tankönyvkiadó, 1985, 1988, JATE Press, 1993, 1998.
2. Csákány Béla: Algebra, JATE jegyzet, Tankönyvkiadó, 1973.
3. Czédli Gábor: Hálóelmélet, JATE Press, 1999.
4. Czédli Gábor: Szerkeszthetőségi feladatok, JATE Press, 2001.
5. Czédli Gábor, Szendrei Ágnes: Geometriai szerkeszthetőség, Polygon Könyvtár, 1997.
6. Fuchs László: Algebra, Nemzeti Tankönyvkiadó, 1993.
7. Schmidt Tamás: Algebra, Nemzeti Tankönyvkiadó, 1993.
8. Szendrei János: Algebra és számelmélet, Tankönyvkiadó, 1975, 1993, a főiskolán tanultak átismétléséhez.
_Előadás, kötelező, 20 óra / 10 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 12 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Leindler László Dr. (LELHAAS.SZE)
Teljesítendő:
min.7 kredit
Leírás:
Tematika

Folytonosság, félig folytonosság egy pontban, felső és alsó határérték. Kompakt halmazon folytonos függvények nevezetes tulajdonságai.
Folytonos függvények sorozatai, pontonkénti konvergencia, egyenletes konvergencia. Konvergenciatételek folytonos függvények sorozataira.
Weierstrass approximációs tétele.
Monoton függvények, elsőfajú szakadások. Monoton függvények folytonos és tiszta ugrórésze.
Korlátos változású függvények, Jordan reprezentációs tétele.
A Riemann-integrál felépítése, beosztásokra vonatkozó tételek.
Integrálhatósági kritériumok a Riemann-integrálra.
Nulla mértékű halmazok és tulajdonságaik.
Lépcsősfüggvények Lebesgue integrálja és az $A$ lemma, $B$ lemma, az integrálfogalom kiterjesztése a $C_1$ és $C_2$ osztályokra.
A Riemann-integrálhatóság Lebesgue kritériuma.

Ajánlott irodalom

1. Szőkefalvi-Nagy Béla: Valós függvények és függvénysorok.
2. Leindler László: Analízis.
_Előadás, kötelező, 20 óra / 7 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Nagy Gábor Péter Dr. (NAGHABS.SZE)
Teljesítendő:
min.8 kredit
Leírás:
Tematika

Görbék a síkon és a térben. Speciális görbék. Paraméterezés, ívhossz, görbület, torzió. A görbeelmélet alaptétele. A felület definíciója, paramétervonalak, érintősík. Felületi görbék, geodetikus vonalak. Első és második alapmennyiségek, geodetikusok differenciálegyenlete, extremalitás. Belső geometria.
Normálgörbület, Gauss-görbület, Theorema Egregium. Bernstein-polinomok, DeCasteljau-algoritmus, Bézier-görbék. Összetett Bézier-görbék.
Bézier-négyszögfelületek, szplájnfelületek.

Ajánlott irodalom

1. Szőkefalvi-Nagy Gyula - Nagy Péter - Gehér László: Differenciálgeometria;
2. Baziljev - Dunyicsev: Geometria II.;
3. Strommer Gyula: Geometria;
4. Kurusa Árpád - Szemők Árpád: Számítógépes ábrázoló geometria.
_Előadás, kötelező, 14 óra / 8 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Csörgő Sándor Dr. (CSSHAFS.SZE)
Teljesítendő:
min.8 kredit
Leírás:
Tematika

Műveletek eseményekkel. A valószínűség matematikai fogalma. A Kolmogorov féle valószínűségi mező. A valószínűség tulajdonságai. A valószínűség klasszikus kombinatorikus és geometriai kiszámítási módja. Feltételes valószínűség. Események függetlensége. A Borel-Cantelli-féle lemmák. Borel halmazok, a legfontosabb valószínűségi eloszlások, várható értékük, szórásaik; eloszlás ill. sűrűségfüggvényük. Valószínűségi változók, valószínűségi vektorváltozók. Eloszlásfüggvényeik ill. sűrűségfüggvényeik és ezek tulajdonságai. Valószínűségi változók függetlensége. Kovariancia, korreláció. Valószínűségi változók várható értéke, szórása és tulajdonságaik. A valószínűségi változók egyéb jellemzői. Valószínűségekre vonatkozó egyenlőtlenségek. Nagy számok törvényei. A gyakorlatokon az előadáshoz kapcsolódó példák megoldásával foglalkozunk.

Ajánlott irodalom

1. Tandori Károly: Valószínűségszámítás, JATE jegyzet, 1973;
2. W. Feller: Bevezetés a valószínűségszámításba és alkalmazásaiba, Műszaki Könyvkiadó, Budapest, 1978:
3. Prékopa András: Valószínűségelmélet, Műszaki Könyvkiadó, Budapest, 1972;
4. Rényi Alfréd, Valószínűségszámítás, Tankönyvkiadó, 1968;
5. Bognár Jánosné - Mogyoródi József - Prékopa András - Rényi Alfréd - Szász Domokos: Valószínűségszámítás feladatgyűjtemény, Tankönyvkiadó, Budapest, 1982.
_Előadás, kötelező, 14 óra / 8 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 8 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 2. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Totik Vilmos Dr. (TOVHABS.SZE)
Teljesítendő:
min.10 kredit
Leírás:
Tematika

Ekvivalencia és számosság fogalma. Megszámlálható és kontinuum számosságú halmazok.
Számosságok összehasonlítása, ekvivalencia-tétel, műveletek halmazokkal és számosságokkal.
Rendezett halmazok és rendtípusok. Jólrendezett halmazok és rendszámok. Műveletek rendszámokkal. Transzfinit indukció. A kiválasztási axióma és ekvivalensei.
Ítéletkalkulus, Boole függvények, teljes függvényrendszerek, normálformák, logikai áramkörök, digitális hálózatok. Az ítéletkalkulus teljességi tétele. Nyelvek és struktúrák. Formulák és kielégíthetőség, következmény fogalma. Teljességi és nemteljességi tétel (megemlítve).

Ajánlott irodalom

1. Hajnal András és Hamburger Péter, Halmazelmélet, Tankönyvkiadó, 1983.
2. Csirmaz László, Matematikai Logika, Tankönyvkiadó, 1994.
3. Kalmár László, A Matematika Alapjai I-II. kötet, JATE jegyzet, Tankönyvkiadó, 1977.
4. Urbán János, Matematikai Logika, példatár, Műszaki Könyvkiadó, 1987.
5. Totik Vilmos, Matematikai Logika, vázlat. [A tematika többé-kevésbé megfelel [1] első része első felének és [4] első négy fejezetének, illetve a [3] könyv feladatainak.]
_Előadás, kötelező, 20 óra / 10 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 3. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 8 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 3. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.2 kredit
Leírás:
Tematika

Oszthatóság az egész számok halmazában. Maradékos osztás; Euklideszi algoritmus; legnagyobb közös osztó; legkisebb közös többszörös.
A számelmélet alaptétele; prímszám; összetett szám. Prímekkel kapcsolatos megoldott és megoldatlan problémák.
Számrendszerek. Oszthatósági szabályok tetszőleges alapú számrendszerben. Számrendszerek alkalmazása különböző típusú feladatokban.
Számolás osztási maradékokkal. Kongruenciák. Az Euler-Fermat-tétel és alkalmazásai.
Egész együtthatós polinomokkal kapcsolatos feladatok. Diofantoszi egyenletek.
A teljes indukció módszerének alkalmazása különböző típusú feladatokban. Rácsgeometria.
Komplex számok. Trigonometriai azonosságok igazolása a komplex számok segítségével.
Hatványközepek, és a közöttük fennálló egyenlőtlenségek. Nevezetes egyenlőtlenségek, és alkalmazásaik. Szélsőértékfeladatok.

Ajánlott irodalom

1. Dr. Szalay Mihály: Számelmélet (spec. mat. tankönyv);
2. Erdős - Surányi: Válogatott fejezetek a számelméletből;
3. W. Sierpinski: 200 feladat az elemi számelméletből (Középiskolai szakköri füzet);
4. Skljarszkij - Csencov - Jaglom: Válogatott feladatok az elemi matematika köréből 1. Aritmetika és algebra;
5. Bartha Gábor - Kun Péter: Válogatott fejezetek a matematikából (Középiskolai szakköri füzet);
6. Reiman István: A geometria és határterületei;
7. Sárközy - Surányi: Számelmélet feladatgyűjtemény;
8. Pólya György: A gondolkodás iskolája,
9. Pólya György: A problémamegoldás iskolája I-II.,
10. Pólya György: A matematikai gondolkodás művészete I-II.,
11. Hajós - Neukom - Surányi: Matematikai versenytételek I-III.,
12. Molnár Emil: Matematikai versenyfeladatok gyűjteménye 1947-1970.,
13. Középiskolai matematika versenyek kötetei,
14. Elemi matematika I-V. (ELTE jegyzet),
15. Róka Sándor: 1000 feladat az elemi matematika köréből,
16. Lukács - Scharnitzky: Érdekes matematikai gyakorló feladatok I-VII.,
17. Reiman István: Nemzetközi matematikai diákolimpiák,
18. Pogáts Ferenc: A Varga Tamás Matematikai Versenyek feladatai,
19. R. Szendrei Julianna: Szakközépiskolai versenyek matematikafeladatai mindenkinek,
20. Bonifert Domonkos: Néhány tipikus problémaszituáció matematikából,
21. Rácz János - Bogdán Zoltán: Matematika feladatok-ötletek-megoldások I-II.
22. Kosztolányi - Mike - Vincze: Érdekes matematikai feladatok,
23. Kosztolányi - Makay - Pintér - Pintér: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
24. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Gyakorlat, kötelező, 8 óra / 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 3. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.6 kredit
Leírás:
Tematika

A matematika tantárgypedagógiájának fogalma, tárgya, főbb kérdései, kapcsolata más tudományokkal. A magyar matematikatanítás vázlatos története. A matematika mint tantárgy, oktatási-nevelési céljai. A matematikatanítás formái, módszerei és segédeszközei. A matematikatanítás megszervezése. A szakkörök, a speciális tagozatok, a matematika versenyek szerepe. Érettségi, felvételi és a megfelelő korosztályos vizsgákra való felkészítés. Kísérletek a matematika oktatásának tartalmi és módszertani korszerűsítésére. A számfogalom kialakítása, fejlesztése; valós számok, komplex számok. A számelmélet tanítása. Betűabsztrakció, az algebrai kifejezések tanítása. A reláció és a függvény fogalmának kialakítása.

Ajánlott irodalom

1. A matematikatanítás módszertanának néhány kérdése (szerk: Cser Andor),
2. Fejezetek a középiskolai matematikatanítás módszertanából (ELTE jegyzet, szerk.: Czapáry Endre),
3. Szemelvénygyűjtemény a matematika tanításához (ELTE jegyzet, szerk.: Czapáry Endre),
4. A matematika tanítása (főisk. jegyzet, szerk.: Ács Pál),
5. Szemelvénygyűjtemény a matematika tanításához (főisk. jegyzet, szerk.: Vörös György),
6. Varga Tamás: A matematika tanítása (ELTE jegyzet),
7. Sümegi László: Tanítási módok, eljárások, ötletek a matematikában (KLTE jegyzet),
8. Pólya György: A gondolkodás iskolája,
9. Pólya György: A problémamegoldás iskolája I-II.,
10. Pólya György: A matematikai gondolkodás művészete I-II.,
11. Ambrus András: Bevezetés a matematikadidaktikába (ELTE jegyzet);
12. A.A. Sztoljár: A matematikatanítás módszerei,
13. A.A. Sztoljár: A matematikatanítás logikai problémái,
14. Szénássy Barna: A magyarországi matematika története,
15. T.Tóth Sándor - Szabó Árpád: Matematikai műveltségünk keretei. Középkor és reneszánsz,
16. Sain Márton: Matematikatörténeti ABC,
17. Sain Márton: Nincs királyi út!, Tantárgytörténeti tanulmányok II. kötet,
18. Staar Gyula: A megélt matematika,
19. Péter Rózsa: Játék a végtelennel,
20. Lakatos Imre: Bizonyítások és cáfolatok,
21. Rényi Alfréd: Dialógusok a matematikáról,
22. Rényi Alfréd: Ars Mathematica,
23. Philip J. Davis - Reuben Hersch: A matematika élménye,
24. Ian Stewart: A matematika problémái, Skemp: A matematikatanítás pszichológiája,
25. Lénárd Ferenc: A problémamegoldó gondolkodás,
26. Jean Piaget: Az értelem pszichológiája,
27. Kelemen László: Pedagógiai pszichológia,
28. Általános és középiskolai tankönyvek,
29. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Előadás, kötelező, 10 óra / 6 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 4. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 4. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.2 kredit
Leírás:
Tematika

Geometriai transzformációk és alkalmazásaik síkgeometriai feladatok megoldásában. Nevezetes elemi geometriai tételek, és alkalmazásaik. Nevezetes síkbeli ponthalmazok, és ezekkel kapcsolatos feladatok. Bolyai Farkas tétele és speciális alkalmazásai.
Euklideszi szerkesztés. A geometriai szerkeszthetőség; nevezetes megoldhatatlan problémák. Poncelet - Steiner - féle szerkesztések; Mohr-Masceroni-féle szerkesztések.
Elemi térgeometriai feladatok. Analógiák és különbözőségek a sík- és a térgeometriában. Euler poliédertétele. Szabályos testek.
Geometriai egyenlőtlenségek; geometriai szélsőértékfeladatok.
Geometria a komplex számsíkon.

Ajánlott irodalom

1. Reiman István: Fejezetek az elemi geometriából (spec. mat. tankönyv);
2. Reiman István: A geometria és határterületei;
3. Skljarszkij - Csencov - Jaglom: Válogatott feladatok és tételek az elemi matematikából, 2/1. Planimetria, 2/2. Geometriai egyenlőtlenségek és szélsőérték-feladatok, 3. Sztereometria;
4. Vigassy Lajos: Egybevágósági transzformációk a síkban és a térben (Középiskolai szakköri füzet);
5. Fitos László: Analóg tételek és feladatok a sík- és térgeometriában (Középiskolai szakköri füzet);
6. Reiman István: Geometriai feladatok megoldása a komplex számsíkon (Középiskolai szakköri füzet);
7. Nicholas D. Kazarinoff: Geometriai egyenlőtlenségek;
8. Major Zoltán: Egy izgalmas szélsőértékfeladat-család;
9. Szőkefalvi-Nagy Gyula: A geometriai szerkesztések elmélete;
10. H.S.M. Coxeter: A geometriák alapjai;
11. Hajós György: Bevezetés a geometriába;
12. Pólya György: A gondolkodás iskolája,
13. Pólya György: A problémamegoldás iskolája I-II.,
14. Pólya György: A matematikai gondolkodás művészete I-II.,
15. Hajós - Neukom - Surányi: Matematikai versenytételek I-III.,
16. Molnár Emil: Matematikai versenyfeladatok gyűjteménye 1947-1970.,
17. Középiskolai matematika versenyek kötetei,
18. Elemi matematika I-V. (ELTE jegyzet),
19. Róka Sándor: 1000 feladat az elemi matematika köréből,
20. Lukács - Scharnitzky: Érdekes matematikai gyakorló feladatok I-VII.,
21. Reiman István: Nemzetközi matematikai diákolimpiák,
22. Pogáts Ferenc: A Varga Tamás Matematikai Versenyek feladatai,
23. R. Szendrei Julianna: Szakközépiskolai versenyek matematikafeladatai mindenkinek,
24. Bonifert Domonkos: Néhány tipikus problémaszituáció matematikából,
25. Rácz János - Bogdán Zoltán: Matematika feladatok-ötletek-megoldások I-II.
26. Kosztolányi - Mike - Vincze: Érdekes matematikai feladatok,
27. Kosztolányi - Makay - Pintér - Pintér: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
28. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Gyakorlat, kötelező, 8 óra / 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 4. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.2 kredit
Leírás:
Tematika

Síkbeli konvex alakzatok; Helly tétele és alkalmazásai.
Kombinatorikus geometriai problémák. Elemi topológiai feladatok.
Kombinatorika: Permutációk, variációk, kombinációk. Binomiális tétel; Pascal-háromszög. A skatulya-elv. A logikai szita formula. Az invariáns módszer alkalmazásai. Partíciós problémák. Sakktáblával kapcsolatos feladatok. Különböző típusú, színezéssel kapcsolatos feladatok.
Gráfelméleti alapfogalmak. Egyszerű gráfok. Összefüggő gráfok. Fák, erdők. Többszörös élű gráfok. Euler-vonal, Hamilton-kör. Síkban rajzolható gráfok. Páros gráfok; házasítási probléma. Turán-típusú tételek. Ramsey tétele. Irányított gráfok.

Ajánlott irodalom

1. Reiman István: Fejezetek az elemi geometriából (spec. mat. tankönyv);
2. Reiman István: A geometria és határterületei;
3. Boltyanszkij-Jefremovics: Szemléletes topológia,;
4. W.G. Chinn - N.E. Steenrod: Bevezetés a topológiába;
5. Andrásfai Béla: Vonalak és felületek topológiája;
6. Andrásfai Béla: Ismerkedés a gráfelmélettel;
7. Andrásfai Béla: Gráfelmélet;
8. N.J. Vilenkin: Kombinatorika;
9. Lovász - Vesztergombi - Pelikán: Kombinatorika;
10. Matematika a matematikai osztályok számára III.;
11. J.J. Gik: Sakk és matematika;
12. Pólya György: A gondolkodás iskolája,
13. Pólya György: A problémamegoldás iskolája I-II.,
14. Pólya György: A matematikai gondolkodás művészete I-II.,
15. Hajós - Neukom - Surányi: Matematikai versenytételek I-III.,
16. Molnár Emil: Matematikai versenyfeladatok gyűjteménye 1947-1970.,
17. Középiskolai matematika versenyek kötetei,
18. Elemi matematika I-V. (ELTE jegyzet),
19. Róka Sándor: 1000 feladat az elemi matematika köréből,
20. Lukács - Scharnitzky: Érdekes matematikai gyakorló feladatok I-VII.,
21. Reiman István: Nemzetközi matematikai diákolimpiák,
22. Pogáts Ferenc: A Varga Tamás Matematikai Versenyek feladatai,
23. R. Szendrei Julianna: Szakközépiskolai versenyek matematikafeladatai mindenkinek,
24. Bonifert Domonkos: Néhány tipikus problémaszituáció matematikából,
25. Rácz János - Bogdán Zoltán: Matematika feladatok-ötletek-megoldások I-II.
26. Kosztolányi - Mike - Vincze: Érdekes matematikai feladatok,
27. Kosztolányi - Makay - Pintér - Pintér: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
28. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Gyakorlat, kötelező, 8 óra / 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.6 kredit
Leírás:
Tematika

Az elemi függvények tanítása. Az analízis elemeinek tanítása. Az egyenletek, egyenlőtlenségek értelmezési lehetőségei; tanításuk. Szöveges feladatok megoldása mint matematikai modellalkotás. A geometriai transzformációk tanítása, a transzformációs szemlélet kialakítása. Az euklideszi geometria tanítása. Vektorok, trigonometria, analitikus geometria. A térszemlélet fejlesztése. A kombinatorika, a valószínűségszámítás és a matematikai logika tanítása. A számítástechnika elemeinek tanítása; a számítógépek szerepe a matematika oktatásában.

Ajánlott irodalom

1. A matematikatanítás módszertanának néhány kérdése (szerk: Cser Andor),
2. Fejezetek a középiskolai matematikatanítás módszertanából (ELTE jegyzet, szerk.: Czapáry Endre),
3. Szemelvénygyűjtemény a matematika tanításához (ELTE jegyzet, szerk.: Czapáry Endre),
4. A matematika tanítása (főisk. jegyzet, szerk.: Ács Pál),
5. Szemelvénygyűjtemény a matematika tanításához (főisk. jegyzet, szerk.: Vörös György),
6. Varga Tamás: A matematika tanítása (ELTE jegyzet),
7. Sümegi László: Tanítási módok, eljárások, ötletek a matematikában (KLTE jegyzet),
8. Pólya György: A gondolkodás iskolája,
9. Pólya György: A problémamegoldás iskolája I-II.,
10. Pólya György: A matematikai gondolkodás művészete I-II.,
11. Ambrus András: Bevezetés a matematikadidaktikába (ELTE jegyzet);
12. A.A. Sztoljár: A matematikatanítás módszerei,
13. A.A. Sztoljár: A matematikatanítás logikai problémái,
14. Szénássy Barna: A magyarországi matematika története,
15. T.Tóth Sándor - Szabó Árpád: Matematikai műveltségünk keretei. Középkor és reneszánsz,
16. Sain Márton: Matematikatörténeti ABC,
17. Sain Márton: Nincs királyi út!, Tantárgytörténeti tanulmányok II. kötet,
18. Staar Gyula: A megélt matematika,
19. Péter Rózsa: Játék a végtelennel,
20. Lakatos Imre: Bizonyítások és cáfolatok,
21. Rényi Alfréd: Dialógusok a matematikáról,
22. Rényi Alfréd: Ars Mathematica,
23. Philip J. Davis - Reuben Hersch: A matematika élménye,
24. Ian Stewart: A matematika problémái,
25. Skemp: A matematikatanítás pszichológiája, Lénárd Ferenc: A problémamegoldó gondolkodás,
26. Jean Piaget: Az értelem pszichológiája,
27. Kelemen László: Pedagógiai pszichológia,
28. Általános és középiskolai tankönyvek,
29. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Előadás, kötelező, 10 óra / 6 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 10 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Klukovits Lajos Dr. (KLLHAES.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A XX. század egyik nagy matematikusa, H. Hankel szerint "A legtöbb tudományban mindegyik generáció lerombolja azt, amit elődei építettek, amit az elődök megállapítottak, azt az utódok átírják. A matematika az egyetlen, amelyben minden egyes generáció új értelmet illeszt a régi struktúrához." E gondolatokat is figyelembe véve mutatjuk be a matematika 4000 éves fejlődésének néhány lépését. Az előadásokban a matematika mint az egyetemes kultúra integráns része jelenik meg, mindig - ha csak vázlatosan is - általánosan bemutatjuk az adott kort, kitérve a kultúra más területeire.
A nagy ókori folyammenti kultúrák (Egyiptom, Mezopotámia, India és Kína) matematikájának néhány kiemelkedő eredménye. Újabb elmélet a rendszerezettnek tekinthető matematika kialakulásának idejéről.
A matematika deduktív tudománnyá válása az ókori görögöknél, az ún. klasszikus kor néhány híres iskolájának bemutatása. Euklidész: Elemek. A bizonyítás és a sejtés erőteljes szétválasztása Archimédésznél.
A középkori iszlám kultúrák matematikájának néhány vonása. Az európai matematika kezdete.
A projektív geometria kialakulása a reneszánsz festészet-elméletből. A nem-euklideszi geometriák létrejötte.
A XIX. század matematikájának néhány jellegzetes vonása. Az igazság elvesztése, majd megtalálása: logicizmus, intuicionizmus, formalizmus. Egy lehetséges válasz arra a kérdésre, hogy "igaz-e, ami bizonyítható, bizonyítható-e, ami igaz." Megjegyzés: Az előadások lényegében csak a középiskolai matematika tananyagra támaszkodnak.

Ajánlott irodalom

1. Euklidész: Elemek, Gondolat, 1983.
2. Freud R. (szerk.): Nagy pillanatok a matematika történetéből, Gondolat, 1981.
3. A. P. Juskevics: A középkori matematika története, Gondolat, 1982.
4. M. Kline: Mathematics in Western Culture, Allen and Unwin, 1954.
5. M. Kline: Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1979, 1990.
6. O. Neugebauer: Egzakt tudományok az ókorban, Gondolat, 1984.
7. B. L. van der Waerden: Egy tudomány ébredése, Gondolat, 1977.
8. B. L. van der Waerden: Geometry and Algebra in Ancient Civilizations, Springer, 1983.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.2 kredit
Leírás:
Tematika

Számsorozatok vizsgálata; különböző, sorozatokkal kapcsolatos feladatok. A Fibonacci-sorozat; származtatása, tulajdonságai. A Fibonacci-sorozattal kapcsolatos feladatok a matematika különböző területeiről.
Változatos logikai feladatok. Az ítéletkalkulus műveleteinek és törvényszerűségeinek alkalmazása "hétköznapi" nyelven megfogalmazott feladatok megoldásában.
Valószínűségszámítás: A diszkrét modell. Geometriai valószínűség. Valószínűségi változók, eloszlások. Feltételes valószínűség. A nagy számok törvénye. Bolyongási problémák. A matematikai statisztika alapfogalmai.
Matematikai játékok, rejtvények.

Ajánlott irodalom

1. Dr. Urbán János: Matematikai logika (spec. mat. tankönyv);
2. Bizám - Herczeg: Sokszínű logika;
3. J.C. Baillif: Logikai sziporkák;
4. Raymond Smullyan; Mi a címe ennek a könyvnek?;
5. Raymond Smullyan: A hölgy vagy a tigris?;
6. Dr. Nemetz Tibor: Valószínűségszámítás (spec, mat. tankönyv);
7. Takács - L. Ziermann: Valószínűségszámítás;
8. Bognárné - Nemetz - Tusnády: Ismerkedés a véletlennel (Középiskolai szakköri füzet);
9. J. Williams: Játékelmélet (Középiskolai szakköri füzet);
10. V.N. Kaszatkin - L.I. Vladükina: Algoritmusok és játékok (Középiskolai szakköri füzet);
11. R. Szendrei Julianna: A játék matematikája;
12. Pólya György: A gondolkodás iskolája,
13. Pólya György: A problémamegoldás iskolája I-II.,
14. Pólya György: A matematikai gondolkodás művészete I-II.,
15. Hajós - Neukom - Surányi: Matematikai versenytételek I-III.,
16. Molnár Emil: Matematikai versenyfeladatok gyűjteménye 1947-1970.,
17. Középiskolai matematika versenyek kötetei,
18. Elemi matematika I-V. (ELTE jegyzet),
19. Róka Sándor: 1000 feladat az elemi matematika köréből,
20. Lukács - Scharnitzky: Érdekes matematikai gyakorló feladatok I-VII.,
21. Reiman István: Nemzetközi matematikai diákolimpiák,
22. Pogáts Ferenc: A Varga Tamás Matematikai Versenyek feladatai,
23. R. Szendrei Julianna: Szakközépiskolai versenyek matematikafeladatai mindenkinek,
24. Bonifert Domonkos: Néhány tipikus problémaszituáció matematikából,
25. Rácz János - Bogdán Zoltán: Matematika feladatok-ötletek-megoldások I-II.
26. Kosztolányi - Mike - Vincze: Érdekes matematikai feladatok,
27. Kosztolányi - Makay - Pintér - Pintér: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
28. Folyóiratok: KöMaL, A Matematika Tanítása, Polygon, KVANT, Matematika v skole, Mathematics Teacher, The American Mathematical Monthly, Mathematics Magazine
_Gyakorlat, kötelező, 10 óra / 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 6. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Teljesítendő:
min.20 kredit
_Gyakorlat, kötelező, 20 óra / 20 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 6. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Nagy Gábor Péter Dr. (NAGHABS.SZE)
Teljesítendő:
min.3 kredit
_Előadás, kötelező, 10 óra / 3 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kurusa Árpád Dr. (KUAHAES.SZE)
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 10 óra / 3 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 5 óra / 1 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Durszt Endre Dr. (DUEHADS.SZE)
Teljesítendő:
min.2 kredit
_Önálló vizsga, kötelező, 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Szigorlat
Javasolt felvétele:
a képzés 3. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Bálintné Dr Szendrei Mária (BASHABS.SZE)
Teljesítendő:
min.2 kredit
_Önálló vizsga, kötelező, 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Szigorlat
Javasolt felvétele:
a képzés 4. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kurusa Árpád Dr. (KUAHAES.SZE)
Teljesítendő:
min.2 kredit
_Önálló vizsga, kötelező, 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Szigorlat
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Németh Zoltán Dr. (NEZHACS.SZE)
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Szabó László Dr. (SZLHACS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Természetes számok: Peano-axiómák. Műveletek definíciója és tulajdonságai. Rendezés, műveletek monotonitása.
Egész számok: a természetes számok félgyűrűjének differenciagyűrűje. Rendezés, műveletek monotonitása.
Racionális számok: az egész számok gyűrűjének hányadosteste. Rendezés, műveletek monotonitása.
Valós számok: a racionális számtest limeszteste. Rendezés, műveletek monotonitása. Teljes metrikus tér.
Komplex számok: a komplex számtest megadásának lehetőségei. Algebrai- és transzcendens számok. Valamely nevezetes konstans (pl. $e$ vagy $&92;pi$) transzcendens voltának igazolása.
A valós és komplex számkör bővítésének lehetőségei: végesrangú algebrák, Frobenius tétele.

Ajánlott irodalom

1. Csákány Béla: Algebra, Tankönyvkiadó, 1974.
2. Fuchs László: Algebra, Nemzeti Tankönyvkiadó, 1993.
3. Szendrei János: Algebra és számelmélet, Tankönyvkiadó, 1975.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Megyesi László (MELHAAS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

1. Az országos versenyek, nemzetközi diákolimpiák, valamint a KÖMAL feladatai alapján a következő témák feldolgozása:
Oszthatóság. Prímszámok. Legnagyobb közös osztó, legkisebb közös többszörös. Kongruenciák. Kínai maradéktétel. A Fermat-tétel. Egész számok különböző sorozatai. Diofantoszi egyenletek.
2. A következő (középiskolában is tárgyalható) elméleti kérdések ismertetése:
A Fermat-tétel és a titkosírás. Prímtesztek és a faktorizáció (vázlatos ismertetés). Carmichael-számok, Fibonacci-számok, a Lucas-számok és általánosításuk, a Lucas-számpárok. Prímeket adó polinomok. Barátságos számpárok és barátságos láncok. Néhány diofantoszi probléma.
3. A tanulók számelméleti érdeklődésének felkeltésére alkalmas nevezetes problémák, sejtések:
a) Fermat-sejtés és megoldásának alapjai. Goldbach-sejtés. Waring-probléma. Hilbert hetedik problémája. Dickson-sejtés és következményei. Páratlan tökéletes szám létezésének kérdése. Giuga sejtése. Ikerprím probléma.
b) Számelméleti rekordok: Mersenne-prímek. Fermat-számok. Barátságos számpárok. Sophie-Germain-prímek.

Ajánlott irodalom

1. Középiskolai Matematikai Versenyek (sorozat)
2. Megyesi László: Bevezetés a számelméletbe, Polygon, 1997.
3. Reimann István: Nemzetközi Matematikai Diákolimpiák 1959-1994, Typotex, 1997.
4. W. Sierpinski: 200 feladat az elemi számelméletből, Középiskolai Szakköri Füzetek, Tankönyvkiadó, 1968.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Klukovits Lajos Dr. (KLLHAES.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A törtekkel való számolás technikája az egyiptomi középbirodalom korában. Pitagoraszi számhármasok az ókori Mezopotámiában: a Plimpton 322-es agyagtábla.
A középkori iszlám tudósok számelmélete. Határozatlan egyenletek, négyzetszámokkal kapcsolatos kérdések a pisai Leonardo Liber Abaci és Liber Quadratorum c. könyveiben.
A komplex szám fogalmának kialakulása a XVIII. században. Hamilton kvaterniói. Transzcendens számok létezésének fölvetése, az első példák. Valamely nevezetes konstans (az $e$ vagy a $&92;pi$) transzcendens voltának elemi bizonyítása.
Ramanujan munkásságának egy-két vonása.
Hilbert VII. problémájának (bizonyos számok transzcendens volta) és megoldásának ismertetése.

Ajánlott irodalom

1. Freud R. (szerk.): Nagy pillanatok a matematika történetéből, Gondolat, 1981.
2. A. P. Juskevics: A középkori matematika története, Gondolat, 1982.
3. M. Kline: Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1979, 1990.
4. O. Neugebauer: Egzakt tudományok az ókorban, Gondolat, 1984.
5. B. L. van der Waerden: Egy tudomány ébredése, Gondolat, 1977.
6. B. L. van der Waerden: A History of Algebra, Springer, 1985.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Hatvani László Dr. (HALHAGS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A feladatok kapcsán tárgyaljuk a közönséges differenciálegyenletek elméletéből az egyes feladatok megoldásához szükséges ismereteket (a kezdetiérték-probléma megoldásának létezése, egyértelműsége, stabilitása; a lineáris rendszerekre vonatkozó alapismeretek, kvalitatív vizsgálatok). Harmonikus rezgőmozgás, radioaktív bomlás, elektromos áramkörök, rezgőkörök, populációk együttélésének differenciálegyenletes modelljei.

Ajánlott irodalom

1. Hatvani László-Pintér Lajos: Differenciálegyenletes modellek a középiskolában, Polygon, 1997.
2. K.K.Ponomarjov, Differenciálegyenletek felállítása és megoldása, Tankönyvkiadó, 1969.,
3. M.Braun, Differential Equations and their Applications, Springer-Verlag, 1975.,
4. H.Kocak, Differential and Difference Equations through Computer Experiment, Springer-Verlag, 1986.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Hatvani László Dr. (HALHAGS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Differenciaegyenletekre és parciális differenciálegyenletekre vezető feladatok (pl. a piac közgazdasági modellje, a húr, membrán rezgése, hővezetés). Stabilitáselmélet.

Ajánlott irodalom

1. Hatvani László-Pintér Lajos: Differenciálegyenletes modellek a középiskolában, Polygon, 1997.
2. K.K.Ponomarjov, Differenciálegyenletek felállítása és megoldása, Tankönyvkiadó, 1969., M.Braun, Differential Equations and their Applications, Springer-Verlag, 1975.,
3. H.Kocak, Differential and Difference Equations through Computer Experiment, Springer-Verlag, 1986.,
4. S.Goldberg, Introduction to Difference Equations, Dover Publications, Inc.; New York, 1958.,
5. Simon L., E.A. Baderko, Másodrendű lineáris parciális differenciálegyenletek, Tankönyvkiadó, Budapest, 1983.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Németh József Dr. (NEJHAFS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A mértani sor, a harmonikus sor, a pozitív természetes számok négyzeteinek reciprokaiból álló sor. Ezekkel kapcsolatos bizonyítások, érdekes tulajdonságok.
Nevezetes számok ($&92;sqrt{2},e,&92;pi$, a Liouville-szám) tulajdonságainak vizsgálata végtelen sorokkal. Hatványsorok, Fourier-sorok, általános függvénysorok, alkalmazások néhány érdekes függvénytani vizsgálatra (pl. sehol sem differenciálható, mindenütt folytonos függvény).
Feladatok a numerikus és hatványsorok, Fourier-sorok köréből. A végtelen sorokkal kapcsolatos történeti áttekintés az ókortól napjainkig.

Ajánlott irodalom

1. Leindler László, Analízis, Polygon, Szeged, 2001.
2. Szőkefalvi-Nagy Béla, Valós függvények és függvénysorok, Polygon, Szeged, 2002.
3. Németh József, Előadások a végtelen sorokról, Polygon, Szeged, 2002.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Nagy Gábor Péter Dr. (NAGHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Példák véges síkokra. A véges síkok leképezésének problémája, Bruck-Ryser tétel. Projektív síkok koordinátázása, konfigurációs tételek (Desargues, Papposz) és a koordinátastruktúra kapcsolata. Nem-desarguesi síkok. Ívek, oválisok, Segre tétele és alkalmazásai. Magpontok, lefogó ponthalmazok. Magasabb dimenziós projektív terek. Kollineációk és polaritások leírása. Kvádrikák, Hermite-görbék, Mőbius síkok és általánosított sokszögek alapvető tulajdonságai.

Ajánlott irodalom

1. D.R. Hughes, F.C. Piper: rojective Planes, Springer, 1968;
2. J.W.P. Hirschfeld: Projective Geometries over Finite Fields, Clarendon
3. Press, Oxford, 1979.
4. J.W.P. Hirschfeld: General Galois Geometries, Clarendon Press, Oxford, 1991.
5. Kárteszi Ferenc: Bevezetés a véges geometriákba, Akad. Kiadó, Budapest, 1976.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Fodor Ferenc Dr. (FOFHAAS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Algoritmuselméleti alapfogalmak, képtárproblémák, sokszögek triangulációja, monoton partícionálás, trapézokra bontás, konvex partícionálás, minimális feszítőfa, konvex burok keresés $2$ és $3$-dimenzióban, pontrendszerek Voronoi cellafelbontása, Delaunay trianguláció, sokszögek extremális pontjai, pontrendszerek átmérője, szélessége, töröttvonal belsejének meghatározása, pontrendszerek felező egyenesei, pontok és egyenes közötti illeszkedések.

Ajánlott irodalom

1. J. O'Rourke, Computational Geometry in C, Cambridge University Press, 1994.
2. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, 1987.
3. T.H. Corman, C.E. Leiserson, R. Rivest, Algoritmusok, Műszaki Könyvkiadó, 1998.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Nagy Gábor Péter Dr. (NAGHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Csoportok. Permutációcsoportok, transzformációcsoportok, csoporthatás, tranzitivitás, élesen tranzitív, k-tranzitív csoportok. Testek. Euklideszi geometria mint a valós testre épített geometria, axiomatika (kommutativitással), a valós és a komplex számtest, véges testek. Egydimenziós affin általános lineáris csoport. A lineáris leképezések szigorúan 2-tranzitív csoportot alkotnak, szemidirekt felbontásuk, a komplex test multiplikatív csoportja a valós síkon, a kvaternió ferdetest multiplikatív csoportja. Általános lineáris csoport. A transzformációcsoport és a mátrixcsoport kapcsolata, bázisváltás, centrum és kommutátor részcsoport. Affin általános lineáris csoport. Szemidirekt felbontása. Projektív geometriák. Projektív sík, magasabb dimenziók, alterek, ideális elemek, homogén koordinátázás. Projektív lineáris csoportok. $PGL(n,T)$, $PSL(n,T)$ definíciói, törtlineáris leképezések, $PGL(2,T)$ szigorú 3-tranzitivitása, a projektív speciális lineáris csoport egyszerűsége. Ortogonális csoportok. Definíció, kvadrikák kanonikus alakja a valós, a komplex és a véges testek fölött, $PGL(2,T)$ és $PO(3,T)$ izometriája és a Klein megfeleltetés.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Megyesi László (MELHAAS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Nemkooperatív játékok. Az egyensúlypont fogalma és főbb tulajdonságai. Véges játékok kevert bővítése. A minimax tétel. Mátrixjátékok és megoldásuk. A tengelymódszer. Bimátrix játékok. Mátrixjátékok és a lineáris programozás, bimátrix játékok és a kvadratikus programozás kapcsolata. Szimplex-módszer. Konkáv játékok. Alkalmazások.
Kooperatív játékok. Általános fogalmak: karakterisztikus függvény, eloszlás fogalma. A játék magja, a játék Neumann-Morgenstern-féle megoldása. Shapley-értékek, Nash, Raiffa koncepciója. Alkalmazások.

Ajánlott irodalom

1. Szidarovszki Ferenc, Molnár Sándor: Játékelmélet műszaki alkalmazásokkal, Műszaki Könyvkiadó, 1986.
2. J.D. Williams: Játékelmélet, Műszaki Könyvkiadó, 1972.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Csákány Béla Dr. (CSBHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Játék-fogalmak, a játékok osztályozása. Stratégiai játékok. Diszkrét játékok, gráfreprezentációjuk. Stratégia diszkrét játékban. Neumann János alaptétele optimális tiszta stratégia létezéséről véges diszkrét játékban.
Végesfokú szimmetrikus normál játék magja. Sprague és Grundy elmélete a mag kiszámításáról. Néhány nevezetes játék elmélete: Nim, Wythoff-játék, Chomp, oktális játékok. Steinhaus és Kalmár elmélete szorzatjáték magjáról.
Malomszerű játékok. Hex; kapcsolata a Brouwer-féle fixponttétellel. Párosítási stratégiák. Topológikus játékok.
Egyszemélyes játékok. Permutációjátékok: tizenötös játék, bűvös kocka. Szeges szoliter. Sejtautomaták: hangya, Fredkin játéka, Conway-féle életjáték. Édenkert-tételek.
A számfogalom felépítése Conway szerint; kapcsolata a kétszemélyes diszkrét játékokkal.

Ajánlott irodalom

1. E.R. Berlekamp, J.H. Conway, R.K. Guy: Winning Ways, Academic Press, 1982.
2. Csákány Béla: Diszkrét matematikai játékok, Polygon, 1998.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kozma József Dr. (KOJHAGS.SZE)
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Leírás:
Tematika

Az axiomatikus módszer. Az axiómarendszserekkel szemben támasztott követelmények. A modell. Geometriai modellek. Projektív, affin geometriák modelljei. A nemeuklideszi geometria felfedezése. Az abszolút geometria analitikus modellje. A hiperbolikus geometria Cayley-Klein modellje és Poincare-modelljei. A Weierstrass-modell. A görbületi tenzor. Geometriák felületeken. Elliptikus, hiperbolikus, euklideszi geometria.

Ajánlott irodalom

1. Coxeter, H.S.M.: Projektív geometria, Gondolat, 1986.
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kozma József Dr. (KOJHAGS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A geometriának mint tudománynak a kialakulása. Az axiomatikus megalapozás igénye, követelményei. A párhuzamosság fogalmának vizsgálata. Abszolút geometria. A hiperbolikus geometria felépítése: párhuzamosság, háromszögek, sokszögek területe, ciklusok, szférák, geometria a paraszférán, párhuzamossági szög, hiperbolikus függvények, trigonometria. A hiperbolikus sík és tér modelljei.

Ajánlott irodalom

1. Szenthe János-Juhász Rozália: A geometria alapjai
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Fodor Ferenc Dr. (FOFHAAS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Nyílt és zárt halmazok, környezetek, kompaktság, összefüggőség. Folytonos leképezések, topologikus ekvivalenciák. Egy körvonalat egy egyenesbe vivő folytonos leképzések.
A palacsintaprobléma (ha A és B két korlátos tartomány a síkon, akkor van olyan egyenes, amely mindkettő területét felezi). Egy görbe takarási szögének definíciója és kiszámítása. Zárt görbének egy pontra vonatkozó körüljárási száma. Görbék homotómiája. A körüljárási szám állandósága homotópiánál.
Egy körlemez önmagába való folytonos leképzésének van fixpontja. Az algebra alaptételének bizonyítása.
Egy gömbfelületet a síkba vivő leképzés két alkalmas átellenes pontot ugyanabba a pontba visz.
A sonkás szendvics felezése (ha A, B és C a tér három korlátos és összefüggő nyílt halmaza, akkor van olyan sík, amely mindháromnak felezi a térfogatát). Vektormezők és leképzések ekvivalenciája. A Föld felszínén mindig van olyan pont, ahol nem fúj a szél. Magasabb dimenziós általánosítások.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Németh József Dr. (NEJHAFS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A kurzus a nevezetes egyenlőtlenségek néhány bizonyításával és ezen egyenlőtlenségek többé-kevésbé egyszerű, illusztráló feladatok megoldásában való alkalmazásával foglalkozik. Az alábbi egyenlőtlenségek tárgyalására kerül sor:
Bernoulli-egyenlőtlenség; Számtani-, mértani- és harmonikus közép közötti egyenlőtlenség; Hatványközépre vonatkozó egyenlőtlenségek; Csebisev-egyenlőtlenség; Cauchy-egyenlőtlenség; Jensen-egyenlőtlenség.

Ajánlott irodalom

1. Ábrahám Gábor, Nevezetes egyenlőtlenségek, Mozaik, 1995.
2. Hódi Endre, Szélsőérték-feladatok elemi megoldása, Tankönyvkiadó, Budapest, 1963.
3. Késedi Ferenc, Egyenlőtlenségek, Tankönyvkiadó, Budapest, 1969.
4. N.D. Kazarinoff, Geometriai egyenlőtlenségek, Gondolat, 1980.
5. G.H. Hardy-J.E. Littlewood-G. Pólya, Inequalities, Cambridge, Univ. Press, 1952.
6. P.P. Korovkin, Egyenlőtlenségek, Tankönyvkiadó, Budapest, 1983.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Pintér Lajos Dr. (PILHAAS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

Az előadásban elsősorban kombinatorikai és kombinatorikus geometriai egyenlőtlenségekkel foglalkozunk. Arra törekszünk, hogy a feladattal kapcsolatban a hallgatók tegyenek fel olyan kérdéseket, amelyek a problémákhoz tartoznak, így annak igazi kifejtését elősegítik. Az előadásban különös figyelmet fordítunk az elmúlt évek matematikai versenyein a témában előfordult feladatoknak.

Ajánlott irodalom

1. Kosztolányi J.-Makay G.-Pintér K.-Pintér L.: Matematikai problémakalauz I., Polygon, 1999.
2. Hajnal P.: Elemi kombinatorikai feladatok, Polygon, 1997.
3. D.O. Skljarszkij-N.N. Csencov-I.M. Jaglom, Válogatott feladatok és tételek az elemi matematika köréből II. rész, 2. kötet Geometriai egyenlőtlenségek és szélsőérték-feladatok, Tankönyvkiadó, 1973.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

I. Egyenlőtlenségek a háromszögben: a háromszög-egyenlőtlenség, a sugáregyenlőtlenség, trigonometrikus egyenlőtlenségek. az Erdős-Mordell-egyenlőtlenség, a talpponti háromszög minimumtulajdonsága, nevezetes pontok szélsőérték-tulajdonságai, a háromszög izoperimetrikus tételei, a félkerület négyzetével kapcsolatos egyenlőtlenségek.
II. Szélsőérték-problémák a sokszögek körében sokszögek izoperimetrikus tételei.
III. Tetraéder egyenlőtlenségek.
IV. Térbeli izoperimetrikus tételek.
V. Különféle testekkel kapcsolatos szélsőértékproblémák.

Ajánlott irodalom

1. Nicholas D. Kazarinoff: Geometriai egyenlőtlenségek, Gondolat Kiadó, Budapest, 1980.
2. D. O. Skljarszkij - N. N. Csencov - I. M. Jaglom: Válogatott feladatok és tételek az elemi matematika köréből 2/2, Geometriai egyenlőtlenségek és szélsőérték-feladatok, Tankönyvkiadó, Budapest, 1973.
3. Reiman István: Geometria és határterületei, Szalay Könyvkiadó és Kereskedőház Kft., Kisújszállás, 1999.
4. Major Zoltán: Egy izgalmas szélsőérték-feladat család, Szignatúra Kft., Szombathely, 1993.
5. D. S. Mitrinovic - J. E. Pecaric - V. Volence: Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 1989.
6. Kosztolányi József - Makay Géza - Pintér Klára - Pintér Lajos: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A kurzus keretében Pólya György heurisztikus problémamegoldási modelljének Alan H. Schoenfeld által módosított (részletezett) változata alapján zömében középiskolás módszerekkel is megoldható feladatokat, problémákat tárgyalunk az egyes problémamegoldási stratégiáknak, módszereknek megfelelő csoportosításban.
A kurzus célja az egyes stratégiák megismertetésével a problémamegoldási készség fejlesztése.
1. Vizsgáljunk speciális eseteket!
a) A feladatra közvetlenül megoldást kapunk speciális értékek behelyettesítésével.
b) A konkrét példa világossá teszi a feladatot, megteremti egy új, más irányú megközelítés lehetőségét.
c) A határesetek vizsgálata révén rögzíthetjük a lehetőségek tartományát.
d) Ha a probléma jellege olyan, konkrét természetes számok behelyettesítésével induktív következtetéseket fogalmazhatunk meg, rekurziót alkalmazhatunk. Teljes indukciós bizonyítások különböző típusai: nem egyet lépünk, visszafelé lépünk, több változó szerinti teljes indukció, dimenziószám szerinti teljes indukció. Végtelen leszállás módszere (lehetetlenségi bizonyítások).
e) Ellenpéldát találhatunk.
2. Vizsgáljuk a problémát kevesebb változóra!
a) A kevesebb változó esetén kapott eredmények felhasználhatók az eredeti probléma megoldása során.
b) A kevesebb változót tartalmazó probléma megoldási módszere működik több változóra is.
c) A változókat egy kivételével rögzítve a nem rögzített változó szerepe vizsgálható.
3. Készítsünk ábrát!
4. Következtessünk visszafelé!

Ajánlott irodalom

1. Arthur Engel: Problem-Solving Strategies, Springer-Verlag, 1998.
2. Loren C. Larson: Problem-Solving Through Problems, Springer-Verlag, 1983.
3. Alan H. Schoenfeld: Problem-Solving in the Mathematics Curriculum, The Mathematical Association of America, 1983.
4. Alan H. Schoenfeld: Mathematical Problem Solving, Academic Press, Inc., 1985.
5. Pólya György magyarul megjelent könyvei
6. Kosztolányi József - Makay Géza - Pintér Klára - Pintér Lajos: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.4 kredit
Leírás:
Tematika

A kurzus keretében Pólya György heurisztikus problémamegoldási modelljének Alan H. Schoenfeld által módosított (részletezett) változata alapján zömében középiskolás módszerekkel is megoldható feladatokat, problémákat tárgyalunk az egyes problémamegoldási stratégiáknak, módszereknek megfelelő csoportosításban.
A kurzus célja az egyes stratégiák megismertetésével a problémamegoldási készség fejlesztése.
5. Vegyük az extremális elemet!
6. Vizsgáljuk a változásokat, keressünk megfelelő függvényt!
7. Keressünk invariánst!
8. Alkalmazzuk a skatulyaelvet!
9. Alkalmazzunk gráfokat!
10. Számláljuk össze kétféleképpen!
11. Interpretáljuk a problémát! (Formulákhoz keressünk modellt!)

Ajánlott irodalom

1. Arthur Engel: Problem-Solving Strategies, Springer-Verlag, 1998.
2. Loren C. Larson: Problem-Solving Through Problems, Springer-Verlag, 1983.
3. Alan H. Schoenfeld: Problem-Solving in the Mathematics Curriculum, The Mathematical Association of America, 1983.
4. Alan H. Schoenfeld: Mathematical Problem Solving, Academic Press, Inc., 1985.
5. Pólya György magyarul megjelent könyvei
6. Kosztolányi József - Makay Géza - Pintér Klára - Pintér Lajos: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
0
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.1 kredit
Leírás:
Tematika

A tanítási gyakorlat tapasztalatainak megbeszélése. Az általános és középiskolai matematikatanításhoz szükséges szakirodalom szemináriumszerű feldolgozása.

Ajánlott irodalom

1. Pólya György: A gondolkodás iskolája,
2. Pólya György: A problémamegoldás iskolája I-II.,
3. Pólya György: A matematikai gondolkodás művészete I-II.,
4. Péter Rózsa: Játék a végtelennel,
5. Rényi Alfréd: Dialógusok a matematikáról,
6. Rényi Alfréd: Levelek a valószínűségről,
7. Rényi Alfréd: Ars Mathematica,
8. Ian Steward: A matematika problémái,
9. Ian Steward: A természet számai,
10. Lakatos Imre: Bizonyítások és cáfolatok,
11. Philip J. Davis - Reuben Hersch: A matematika élménye,
12. A matematikai gondolkodás természete (szerk.: Robert J. Sternberg és Talia Ben-Zev),
13. Raymond Smullyan: Mi a címe ennek a könyvnek?,
14. Raymond Smullyan: A hölgy vagy a tigris?,
15. Raymond Smullyan: Seherezádé rejtélye,
16. Hódi Endre: Matematikai mozaik,
17. Hódi Endre: Szélsőérték-feladatok elemi megoldása,
18. Waclaw Sierpinski: 200 feladat az elemi számelmélet köréből,
19. Kazarinoff: Geometriai egyenlőtlenségek,
20. Vigassy Lajos: Egybevágósági transzformációk,
21. Dienes Zoltán: Építsük fel a matematikát!,
22. Vilenkin: A végtelen kutatása,
23. Laczkovich Miklós: Sejtés és bizonyítás,
24. Mérő László: Észjárások,
25. Mérő László: Mindenki másképp egyforma,
26. Hámori Miklós: Arányok és talányok,
27. Freud Róbert: Nagy pillanatok a matematika történetében,
28. Lévárdi László - Sain Márton: A ráció üzenetei - Feladatok a távoli múltból,
29. B.L. van der Waerden: Egy tudomány ébredése,
30. Skemp: A matematikatanulás pszichológiája,
31. Weaver: Szerencse kisasszony,
32. Ja I. Hurgin: Mindennapi döntéseink és a matematika,
33. Török Judit: A Fibonacci-sorozat
_Gyakorlat, kötelező, 5 óra / 1 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 6. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Kosztolányi József Dr. (KOJHABS.SZE)
Teljesítendő:
min.2 kredit
Leírás:
Tematika

A gyakorlat során a hallgatók általános és középiskolai órákat látogatnak, ezeket adott szempontrendszer alapján elemzik, majd erről beszámolnak. A gyakorlat célja az iskolai tanítási gyakorlat, és a matematika szakmódszertani elmélet összekapcsolása.
_Gyakorlat, kötelező, 10 óra / 2 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Gyakorlati jegy
Javasolt felvétele:
a képzés 5. félévében.
Meghirdetése:
az őszi félévben
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
MML-KVS L Matematikai Tszcs. kötelezően választható MSc tárgyai modul
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Hajnal Péter Dr. (HAPHABS.SZE)
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 12 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, kötelező, 4 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Felelős oktató:
Czédli Gábor Dr. (CZGHAAS.SZE)
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 14 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Teljesítendő:
min.3 kredit
_Előadás, kötelező, 10 óra / 3 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Felelős tanszék:
Matematikai Tanszékcsoport
Teljesítendő:
min.4 kredit
_Előadás, kötelező, 12 óra / 4 kredit
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Kollokvium
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
_Gyakorlat, nem kötelező, 4 óra
Ismétlés:
A tárgyelem nem ismételhető.
Teljesítés módja:
_Aláírás
Kurzushirdető tanszék:
Matematikai Tanszékcsoport
Utolsó frissítés dátuma: 2012.08.25. 23:08

Súgó

 
Ezen az oldalon az egyetem ETR tanulmányi rendszerében meghirdetett kurzusok közt kereshet és böngészhet. Az ETR-ből az adatok időszakosan kerülnek áttöltésre, ennek időpontját az „Utolsó frissítés dátuma” szövegnél ellenőrizheti. Fontos, hogy csak azok a képzések, szakok, oktatók stb. jelennek meg itt, amelyekhez (akikhez) az adott félévben már történt az ETR-ben kurzushirdetés. A teljes egyetemi szakkínálatról a felvi.hu oldalain, vagy az egyes karok honlapján tájékozódhat.
 
Először az egyetemi félévet kell kiválasztania, ez az oldal tetején a „… félév ETR-tanrend” felirat melletti balra <<<, ill. jobbra >>> mutató hármas nyílhegyekkel lépegetve lehetséges. Magán a feliraton való kattintás az oldalt alapállapotba állítja.
 
A „Tanrendi kereső” mezőbe írt szöveggel általános keresést végezhet egy lépésben a képzési programok, kurzuskódok, oktatók, szakok és tanszékek közt.
 
Ha a „Részletes keresési feltételek” dobozt a jobbra mutató kettős >> nyílheggyel kinyitja, akkor több szempontú keresést indíthat, ha a megfelelő mezőkre való kattintás után megjelenő listákból a kívánt tételeket (feltételenként egyet) kiválasztja. A lekérdezéshez kijelölt szempontokat a „Kiválasztott keresési feltételek” rész után ellenőrizheti.
 
A „Tanrendi böngésző” részben keresés nélkül, rendezett listákat áttekintve tájékozódhat a féléves tanrendben. A böngészést több kiinduló szempont szerint lehet elkezdeni (oktatók, szakok, képzési programok, tanszékek, ill. karok).
 
A böngésző és a kereső többoszlopos eredménylistái általában a különböző oszlopok szerint átrendezhetők: ehhez a megfelelő oszlopnévre kell kattintania (egyszer az emelkedő, kétszer a csökkenő sorrendhez). Az aktuális rendezettséget a fel- vagy lefelé mutató kettős nyílhegy mutatja az oszlopnévben.
 
A listák sorainak a végén található jobbra mutató kettős >> nyílhegyek rendszerint a megfelelő adat ETR-beli nyilvános adatlapját mutatják meg. Az ezen való továbblépés esetén előfordulhat, hogy egy link már védett, nem nyilvános oldalra vezet, ilyenkor az ETR-es bejelentkező képernyő jelenik meg. Ekkor vagy lépjen vissza a böngészője megfelelő gombjával, vagy jelentkezzen be az ETR-be, ahol az adatlekérést a védett oldalakon is folytathatja.
 
A „Képzési programok szerinti kurzuskódlista” képernyőn két adat rövidítetten kerül megjelenítésre. Ezek feloldása:
Képzési forma (szint)
 
Tagozat
0
Nem releváns
 
E
Esti
A
Alapképzés
 
K
Képzőhelyen kívüli
B
Bachelorképzés
 
L
Levelező
E
Egységes osztatlan képzés
 
N
Nappali
F
Felsőfokú szakképzés
 
T
Távoktatás
K
Kiegészítő alapképzés
 
 
 
M
Mesterképzés
 
 
 
P
Doktori képzés
 
 
 
S
Szakirányú továbbképzés
 
 
 
X
Egyéb képzés
 
 
 
 
Készítő