Válogatott publikációk

T. Csendes: A Simulation Study on the Chemoton. Kybernetes 13(1984) 79-85

Z. Hantos, B. Daróczy, B. Suki, G. Galgóczy, and T. Csendes: Forced oscillatory
impedance of the respiratory system at low frequencies. Journal of Applied Physiology
60(1986) 123-132

T. Csendes: Nonlinear Parameter Estimation by Global Optimization - Efficiency
and Reliability. Acta Cybernetica 8(1988) 361-370

Z. Hantos, B. Daróczy, T. Csendes, B. Suki, and S. Nagy: Modelling of Low-frequency
Pulmonary Impedance in the Dog. Journal of Applied Physiology, 68(1990) 849-860

T. Csendes and J. Pintér: The impact of accelerating tools on the interval
subdivision algorithm for global optimization, European J. Operational Research
65(1993) 314-320

B.P. Kristinsdottir, Z.B. Zabinsky, T. Csendes, and M.E. Tuttle: Methodologies for
tolerance intervals. Interval Computations, 3(1993) 133-147

D. Ratz and T. Csendes: On the selection of Subdivision Directions in Interval
Branch-and-Bound Methods for Global Optimization. J. Global Optimization, 7(1995) 183-207

T. Csendes and D. Ratz: Subdivision direction selection in interval methods for
global optimization. SIAM J. Numerical Analysis, 34(1997) 922-938

A.E. Csallner, T. Csendes, and M.C. Markót: Multisection in Interval Methods for
Global Optimization I. Theoretical Results, J. Global Optimization 16(2000) 371-392

T. Csendes: New subinterval selection criteria for interval global optimization.
J. Global Optimization 19(2001) 307-327

M.C. Markót and T. Csendes: A new verified optimization technique for the "packing
circles in a unit square" problems. SIAM J. on Optimization 16(2005) 193-219

T. Csendes, B.M. Garay, and B. Bánhelyi: A verified optimization technique to locate
chaotic regions of Hénon systems. J. of Global Optimization 35(2006) 145-160

P.G. Szabó, M.Cs. Markót, T. Csendes, E. Specht, L.G. Casado, and I. Garcia:
New approaches to circle Packing in a square. Springer-Verlag, Berlin, 2007

B. Bánhelyi, T. Csendes, B.M. Garay, and L. Hatvani: A computer-assisted proof for
Sigma_3-chaos in the forced damped pendulum equation. SIAM J. on Applied Dynamical
Systems 7(2008) 843-867