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Summary

While chemotherapy is successful at inducing remission of acute myeloid
leukaemia (AML), the disease has a high probability of relapse. Strategies to
prevent relapse involve consolidation chemotherapy, stem cell transplanta-
tion and immunotherapy. Evidence for immunosurveillance of AML and sus-
ceptibility of leukaemia cells to both T cell and natural killer (NK) cell attack
and justifies the application of immune strategies to control residual AML
persisting after remission induction. Immune therapy for AML includes allo-
geneic stem cell transplantation, adoptive transfer of allogeneic or autologous
T cells or NK cells, vaccination with leukaemia cells, dendritic cells, cell
lysates, peptides and DNA vaccines and treatment with cytokines, antibodies
and immunomodulatory agents. Here we describe what is known about the
immunological features of AML at presentation and in remission, the current
status of immunotherapy and strategies combining treatment approaches
with a view to achieving leukaemia cure.
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Background

In the 1970s it became apparent that the recently intro-
duced chemotherapeutic agents daunorubicin and cytosine
arabinoside could achieve remissions in a substantial
number of patients with acute myeloid leukaemia (AML).
However, unlike the experience with childhood acute lym-
phoblastic leukaemia, it was clear that remissions were not
usually maintained by consolidation and maintenance
treatments [1]. This was the incentive to explore the idea of
preventing relapse by vaccinating patients against leu-
kaemia at remission, when the disease was at a low residual
level. One vaccine trial with bacille Calmette–Guérin
(BCG) and irradiated autologous leukaemia cells did report
prolonged remission and survival in the vaccinated group
[2], but interest in vaccination waned with the develop-
ment of high-dose therapy and stem cell transplantation
(SCT) to sustain remissions. An important lesson from
allogeneic SCT was that the donor immune system could
confer a graft-versus-leukaemia (GVL) effect whose
potency has been realized increasingly over the last few
decades, supporting a role for both donor T cells and
natural killer (NK) cells in the suppression and elimination
of residual leukaemia after SCT [3]. Four decades after the
initial attempts at vaccination for AML and with only small

improvements in the long-term survival of AML patients,
especially those aged over 60 years, interest in immune
mechanisms controlling AML and immunotherapy for
AML has been revived. Here we review the evidence for the
interaction of the immune system with AML and results of
recent vaccine trials and outline developing immunothera-
peutic strategies.

Interaction of the immune system with AML

AML cells as targets for immune attack

There is abundant evidence that AML cells are susceptible
targets of innate and adaptive immune responses. AML
cells express both major histocompatibility complex
(MHC) classes I and class II, making them susceptible to T
cell recognition and attack. They also express major immu-
nogene complex (MIC)-A/B, one of the ligands for the acti-
vating NK cell receptor NKG2D. T cells and NK cells exert
cytotoxicity through perforin-granzyme release, interaction
of TNF-related apoptosis-inducing ligand (TRAIL) with
death receptors on the target causing apoptosis, and indi-
rectly through cytokine production of inflammatory
cytokines tumour necrosis factor (TNF) and interferon
(IFN) [4–6].
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Allogeneic anti-leukaemia reactivity

The most compelling data for the susceptibility of AML to
immune attack comes from experience with allogeneic SCT,
where both T cells and NK cells are implicated in the GVL
effect [3]. Humanized severe combined immunodeficiency
(SCID) mouse models demonstrate that T cell clones derived
from patients after allogeneic SCT can prevent and control
the emergence of human leukaemia in vivo [7,8]. In vitro, a
number of studies show that AML cells are targeted by donor
T cells after SCT and at least one minor histocompatibility
antigen (mHAg) on AML cells has been characterized [9].
Allogeneic NK cells are cytotoxic to AML targets that do not
express cognate human leucocyte antigen (HLA) molecules
for the killer immunoglobulin-like receptor (KIR) on the
donor’s NK cell, protecting allorecipients from relapse [10].
Other allogeneic interactions between NK cells and targets
that do not follow the ‘missing self ’ rule also occur in HLA-
identical SCT. Notably, donors possessing KIR groups of the
B haplotype confer protection against relapse in both HLA
matched unrelated [11] and related SCT [12]. Transplant
data suggests that NK mediated GVL is very specific for
myeloid leukaemias.

Autologous anti-leukaemia reactivity

Cytotoxic interactions also occur between autologous lym-
phocytes and AML cells. It has been known for many years
that fresh autologous leukaemic blasts are lysed by cytokine-
activated NK cells [13,14]. AML expression of NK ligands,
including MHC class I molecules and CD44, determines
their susceptibility to NK attack. A high expression of
HLA-G, HLA-Bw4 and HLA-C protects AML cells from NK
lysis and is associated with poorer outcome after chemo-
therapy [15,16]. T cells recognizing autologous AML cells
have been generated in vitro in prolonged culture where the
T cells are restimulated with AML antigen-presenting cells
[17,18] and T cells specific for several antigens expressed on
AML cells (WT1, PR1, PRAME) are often detected in
patients with AML compared with infrequent low levels of
expression seen in healthy individuals [19,20].

The AML stem cell as a target for immune attack

It is generally accepted that cure of AML can only be accom-
plished by eliminating the leukaemic progenitor responsible
for maintaining remission. Using SCID-Hu mouse models,
Dick and colleagues showed that only 1/250 000 AML
CD34+CD38– cells were capable of establishing leukaemic
haematopoiesis in the recipient [21,22]. These cells could be
targeted by alloreactive T cells recognizing minor antigens
on the leukaemia stem cells [7,8]. These models should be
interpreted with caution, as the xenogeneic milieu of the
recipient mouse underestimates the number of cells capable

of self-renewal and do not provide clear evidence that long-
lived AML progenitors are subject to the same degree of
immune attack. Furthermore, they do not identify whether
all subtypes of AML have comparable hierarchies of long-
lived progenitors. Indeed, an alternative model of leukaemia
cure is that a sustained T cell response to the progeny of the
AML stem cell but not the small stem cell pool itself could
contain the leukaemia at a minimal disease level, resulting in
a functional cure [3].

Immune surveillance (IS) in AML

Although the concept of immune surveillance is well
accepted, evidence for IS specifically in AML is largely indi-
rect, revealed through relationships between treatment
outcome and immune parameters and adaptive changes
made by the leukaemia favouring immune evasion, unlike
viral-induced malignancies. Perhaps the most compelling
evidence for a significant role of immune control of AML
comes from several observations indicating that lymphocyte
recovery following induction chemotherapy is strongly pre-
dictive for outcome. T cells are reduced after chemotherapy
but have a rapid clonogenic potential which allows a swift T
cell recovery [23]. Patients achieving the highest lymphocyte
counts within 6 weeks of chemotherapy have the lowest
relapse rates [24–26]. Long-term survival in AML is also
favoured by normalized lymphocyte counts [27]. These data
all suggest that an intact immune system can protect against
relapse of disease, but do not define whether the effect is
mediated through T cells or NK cells.

How AML evades immune control

There are diverse abnormalities in AML at presentation and
relapse that suggest how the leukaemia may develop despite
immunosurveillance and how an established leukaemia may
acquire new characteristics to defeat immune control.
Figure 1 depicts the interactions between AML cells and the
immune environment. Genetic features are emerging that
may favour the development of AML in the presence of an
intact immune system. There is an increased frequency in
AML of a particular genotype of the co-stimulatory mol-
ecule cytotoxic lymphocyte antigen -4 (CTLA-4) [28]. The
inhibitory KIR molecule KIR 2DL2 is expressed more fre-
quently in AML, again suggesting a predisposition for AML
through some form of immune escape [29]. There is also
strong evidence that an established AML can mutate to
escape immune control. The most dramatic example of this
comes from studies after SCT where relapsed leukaemias
have been found to down-regulate co-stimulatory mol-
ecules, become resistant to NK cell-mediated lysis [30] and,
after haploidentical SCT, down-regulate the entire mis-
matched HLA haplotype to avoid powerful GVL effects
through mismatched CTL [31]. AML cells at presentation of
disease show a number of abnormalities suggestive of
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immune pressure to select variants that evade immune
surveillance. AML can express the ligand for the
glucocorticoid-induced tumour necrosis factor-related
protein (GITRL), which can block NK function through
triggering GITR on the NK cell directly or through soluble
GITRL [32]. AML blasts often weakly express co-stimulatory
molecules which may favour their escape from T cell-
mediated killing, and the probability of remaining in remis-
sion is greatest in patients who express both CD80 and CD86
[4]. AML cells can shed ligands for co-stimulatory molecules
such as the 4-1BB ligand, which may allow the leukaemia to
block T cell attack by the binding of soluble ligand to the T
cell [33]. The class II-associated invariant chain self-peptide
(CLIP) is expressed variably in AML. CLIP down-regulation
can increase antigenicity of AML cells (by unblocking MHC
class II loading with self-antigen) and increase CD4
responses. Patients whose AML blasts have less CLIP bound
to HLA-DR molecules have prolonged remissions [34]. AML
cells secrete soluble factors which may be responsible for a
variety of defects observed in T cell and NK cell function
[35,36]. Through their myeloid-lineage affinity, AML cells
can generate leukaemic dendritic cells (DC) in vitro and in
vivo which function as antigen-presenting cells (APC).
However, AML DC are distinctly abnormal [37]. They can
inhibit the induction of CTL, inducing T cell anergy [38–40]
and favouring the generation of regulatory T cells [41] which
are increased in AML [42]. Probably as a consequence of the
leukaemia, T cells in AML show several abnormalities: recent
thymic emigrants are reduced, suggesting defective thymic
function [43]. In a detailed study of T cells in AML Le Dieu
and colleagues found T cells with abnormal phenotypes and
genotypes that formed defective immune synapses with
AML blasts [44]. Finally, the AML microenvironment may
favour AML survival – mesenchymal stromal cells in leu-
kaemias can provide an immunosuppressive milieu [45] and
the protective endosteal region of the marrow favours the
survival of leukaemic stem cells [46].

Developments in immunotherapy of AML

Treatment strategies

Whether the goal of immunotherapy in AML is to boost the
patient’s immune system or to confer immunity with T cells,
NK cells or monoclonal antibodies, immune treatment is
usually planned as a means of sustaining remission once the
disease has been bulk-reduced with chemotherapy. Animal
models of AML have proved useful in providing the basis for
adoptive T cell and NK cell therapy [47], exploring the com-
bination of immunotherapy with chemotherapy [48] and
defining the role of regulatory T cells in preventing full effi-
cacy of leukaemia-specific cytotoxic T cells in a mouse AML
model [49]. The development of robust human leukaemia
models in immune deficient mice has helped to identify
MHag, CD44 and WT1 as targets for immune attack that
result in the elimination of human AML transferred into
non-obese diabetic (NOD)-SCID or the more permissive
NOD/LtSz-scid IL2Rgammac null (NSG) mice [50–53].
These studies have helped to pinpoint treatments and factors
which improve elimination of AML progenitor cells, but are
limited by the artificial environment of the mouse which,
despite immune deficiency, may not represent a sufficiently
permissive environment for human AML to proliferate. In
man, clinical immunotherapy trials have variously explored
cytokines, vaccines to boost T cell immunity, treatments to
increase susceptibility of the target as well as strategies to
directly attack AML cells with antibodies, or lymphocytes
(Fig. 2).

Cytokines

The availability of the lymphokine interleukin (IL)-2 for
clinical use in the 1980s precipitated a number of clinical
trials exploring its potential to boost both T cell and NK cell
function to prevent relapse after induction therapy for AML.

Fig. 1. Interactions between acute myeloid
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Results have been variable [54–59]. Some trials demon-
strated a prolongation of remission. However monocytic
leukaemias can express the IL-2 receptor, which carries a
theoretical risk of IL-2 induced relapse [60]. Most recently
Romero et al. used low-dose IL-2 in conjunction with hista-
mine dihydrochloride, which enhances NK killing through
conserving expression of the activating receptors NKG2D
and NKp46 [61]. Interleukin-15 is another lymphokine tar-
geting the common gamma chain of the IL-2 receptor, which
is emerging as a critical factor for growth of T cells and NK
cells after lymphoablative chemotherapy as well as promot-
ing NK cytotoxicity [62]. When IL-15 becomes available for
clinical trial it will be of major interest to explore its appli-
cation early after remission induction to expand the lympho-
cyte compartment rapidly to reduce relapse. Other cytokines
of potential interest in AML are granulocyte–macrophage
colony-stimulating factor (GM–CSF), which can increase
antigen presentation by the leukaemia, and interferon, which
can increase lymphocyte cytotoxicity, up-regulate MHC
expression on the tumour and suppress malignant cell pro-
liferation [63,64]. However, in contrast to the wide experi-
ence of IFN in CML, it has been rarely employed in AML
except in the context of leukaemic relapse after stem cell
transplantation.

Monoclonal antibodies

Monoclonal antibodies can kill leukaemic cells via a variety
of mechanisms and have emerged as promising therapeutic
tools, due both to their specificity and potential for reduced
toxicity compared to chemotherapy. AML cells express
several surface molecules that have been explored as targets
for monoclonal antibody therapy. These include CD33,
CD123 (IL-3 receptor alpha chain) [65], CD47 (integrin-
associated protein) [66,67], C-type lectin [68] and CD64
(high-affinity Fc gamma receptor) [69]. Most experience
has been obtained with antibodies targeting CD33, a
surface glycoprotein found on more than 80% of myeloid

leukaemias but not on normal haematopoietic stem cells or
mature granulocytes. Thus anti-CD33 antibodies eliminate
malignant myeloid cells selectively while sparing normal
stem cells [70]. The first humanized CD33 molecule
approved by the Food and Drug Administration (FDA)
was conjugated with calicheamycin (gemtuzumab). Trials
exploring single-agent use of gemtuzumab have achieved
remission only in the in the range of 15%, but gemtu-
zumab used together with other agents to treat relapsed or
refractory leukaemia are promising [71–77]. The most sig-
nificant toxicity reported is liver injury, occurring most
commonly when gemtuzumab is used in combination with
thioguanine or in the setting of allogeneic stem cell trans-
plantation [78]. Antibody treatment has been reviewed
recently [79].

Whole cell vaccines

AML cells are weak stimulators of T cells and often possess
mechanisms that prevent induction of T cell response and
induce resistance to cytotoxicity (see above). Simple vacci-
nation with irradiated blasts with BCG or other cytokines
resulted in prolongation of remission but with no improve-
ment in survival [1]. To increase the susceptibility of AML to
immune attack, investigators have sought to improve anti-
genicity of the leukaemia by transfection of genes for
co-stimulatory molecules such as 4-1BB ligand [80], combi-
nations of CD80 and IL-2 [81] or by differentiating the blasts
into leukaemic DC. In a study of 22 AML patients, DC were
generated successfully in five and used to treat patients in
remission. However, only two of these patients were long-
term survivors [82]. Alternatively, DC have been generated
from AML patients in remission and made more antigenic
by fusion with AML blasts [83], exposure to AML lysates or
peptide antigens or transfection with RNA [84]. A clinical
trial with a monocyte-derived DC loaded with mRNA for
Wilms tumour-1 (WT1) antigen is under way [85]. Although
immune responses to AML can be enhanced in vitro with

Fig. 2. Immunotherapeutic strategies for acute
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these approaches, clinical data are scanty and clinical
responses in small diverse patient series is still very prelimi-
nary (reviewed in [86]).

Antigen-specific vaccines

A recent review listed more than 14 candidate leukaemia-
associated antigens expressed by AML, some of which have
formed the basis for developing antigen-specific vaccines
using DNA or peptides [87]. Most widely researched and
developed as peptide vaccines in clinical trials are the
HLA-A2 peptide epitopes of WT1 (WT1126), proteinase
3 (PR1) and hyaluronan-mediated motility receptor
(RHAMM)/CD168 (receptor for hyaluronic acid mediated
motility), and an HLA A24-specific epitope of WT1 [88].
Vaccines have been combined with the BCG-based adjuvant,
montanide, keyhole limpet haemocyanin (KLH) or incom-
plete Freund’s adjuvant, with or without concurrently
administered GM–CSF [89]. All these peptides induce
immune responses with increases in tetramer-positive T cells
producing gamma-interferon after peptide stimulation. A
number of clinical trials have been carried out with peptide
vaccines: Oka et al. described 12 AML patients in CR and
two MDS patients vaccinated with 0·3–3·0 mg of a modified
HLA-A24–binding WT1 class I epitope emulsified in
Montanide. There were clinical responses with reduction in
leukaemic blasts associated with immune responses to WT1
in some patients but no complete remissions [89]. Keilholz
et al. described 17 AML patients in CR and two patients with
refractory anaemia with excess blasts (RAEB) receiving a
median of 11 vaccinations of WT1126 peptide, with KLH
adjuvant and GM–CSF. Ten AML patients had stable disease
and there was a reduction in leukaemic blasts in the two
patients with RAEB [90]. Molldrem and colleagues serially
vaccinated 66 patients with CML, AML and MDS at various
stages of disease progression with the PR1 peptide at doses
ranging from 0·25–1·0 mg with Montanide and GM–CSF.
Stable disease and some complete remissions were observed
associated with induced immune responses to PR1. Event-
free survival was prolonged significantly in the patients who
showed an immune response [91]. Rezvani and colleagues
treated eight patients with AML in remission or stable MDS
with a single dose of a combined PR1 and WT1 vaccine and
observed immune responses to either PR1 or WT1 in all
patients, associated with a transient fall in WT1 mRNA
residual disease [92]. Greiner recently reported the results of
high-dose RHAMM peptide vaccination given bi-weekly.
Four of nine patients had immunological responses and
three showed clinical responses – reduction of leukaemic
marrow blasts and improved blood counts [93]. It is difficult
to draw firm conclusions from this diverse group of patients
treated with different vaccines and schedules, but it is pos-
sible to conclude that immune responses were nearly always
necessary for a clinical response or reduction in leukaemia
burden measured by WT1 mRNA. Clinical responses,

assessed differently in each study, ranged from reduction in
marrow blasts, improved blood counts and impressive con-
tinuous complete remissions in some high-risk patients, to
complete remissions in perhaps 5% of evaluable patients.
While these data are promising, the studies are too small and
diverse to draw any meaningful conclusions about the true
efficacy of peptide vaccination in AML. Currently, T cell
responses to peptide vaccines are limited to single MHC class
I epitopes. A broad range of peptides spanning most
common HLA molecules and including MHC class II
epitopes would not only extend the applicability of these
vaccines to more patients but would also recruit CD4 T cell
help that could sustain CD8 T cell responses over a longer
period. As an alternative, some researchers have focused
upon developing DNA vaccines incorporating the entire
sequence of the antigen [20].

NK cells

NK cells with the potential for alloreaction use the inhibitory
killer cell immunoglobulin-like receptors (KIRs) to sense the
missing expression of self-MHC class I molecules. Therefore,
NK cell alloreactions are generated between individuals that
are KIR ligand mismatched [47]. NK cells are relatively easy
to select from apheresis donations, but although typically
approximately 5 ¥ 108 cells can be obtained relatively pure,
this may not represent a sufficient number for clinical effi-
cacy [94]. Miller and colleagues therefore sought to expand
transfused NK cells in vivo. Selected NK cells from HLA
identical donors were transfused into 19 patients with
high-risk AML after conditioning with low-dose total
body irradiation or a combination of fludarabine and
cyclophosphamide. The conditioning induced a rise of IL-15
and circulating NK cell numbers which showed enhanced
cytotoxicity to leukaemia lasting more than 3 weeks. Five
patients achieved complete remission [95]. Other investiga-
tors have developed clinical-grade strategies to expand NK
cells ex-vivo using B cell lines [96] or modified K562 cells
[97]. Such techniques can yield 20–200-fold expansion of
pure but activated NK cells over several weeks. Expanded
cells are fully functional and kill leukaemia and tumour
targets. Clinical trials using expanded NK cells have not yet
been reported. Future developments may include combined
ex-vivo and in vivo expansion approaches.

Adoptive T cell therapy

Allogeneic T cells can be raised against mHag by peptide-
pulsed DC or AML cells and are being used in treatment of
relapsed leukaemia after stem cell transplantation. Outside
the context of SCT, the occurrence in patients of CTL specific
for AML supports the possibility of using expanded autolo-
gous antigen-specific CTL to attack AML [3,86]. Adoptive
transfer of leukaemia-specific T cells presents different
challenges according to whether the transfused T cells are
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autologous or allogeneic in origin. Treatment with allogeneic
T cells requires immunosuppression of the recipient to
permit at least the short-term survival of the transfused cells.
Two studies of allogeneic T cell transfer in non-transplant
recipients have been reported [98,99]. Haploidentical donor
lymphocyte transfusions were given to patients with diverse
malignancies, including 13 patients with high-risk AML.
Transfusion was followed by a cytokine storm without any
sustained cellular engraftment, but there were tumour
responses including five complete remissions in the AML
patients [99]. Future developments will need to focus upon
ways to achieve a short controlled engraftment sufficient to
confer an anti-leukaemia effect perhaps by engineering T
cells to escape immune attack, which may in turn require the
co-insertion of a suicide gene as a safety precaution to
prevent sustained persistence and expansion of the foreign T
cell clone. Autologous T cell infusions can avoid the prob-
lems of alloreactivity of patient to donor or donor to patient.
Here the problem is to generate sufficient numbers of T cells
with powerful anti-leukaemia activity. A promising strategy
is to sequence the high-avidity T cell receptor (TCR) from T
cell clones recognizing leukaemia antigen targets and insert
the TCR gene into T cells of the AML patient [52]. By choos-
ing a long-lived central memory T cell population as the
carrier, for example, specific for a DNA virus such as cytome-
galovirus (CMV), it may be possible to achieve a sustained T
cell control of AML. An alternative approach in early clinical
trials in ALL is the insertion of a chimeric antigen receptor
(CAR) into the host T cell [100]. The external portion of the
CAR is an antibody site binding to a leukaemia-restricted
surface molecule, while the intracellular portion triggers T
cell activation pathways leading to a cytotoxic T cell response
after the T cell binds to the leukaemia. However, despite the
identification of leukaemia-specific T cells in patients with
AML [17–19], there are many hurdles to overcome before
adoptive autologous leukaemia-specific T cell transfer
becomes a clinical possibility [101].

Optimizing immunotherapeutic approaches in AML

While current experience with antigen specific and cell-
based vaccines supports the potential of such immuno-
therapy to control AML, response rates rarely surpass 20%
and complete responses are uncommon and seldom
sustained. To improve upon these results will require a com-
bined approach to enhance all the components of the
immune response to the leukaemia. We can now identify
points in the pathway to AML cell destruction that could be
enhanced to improve the therapeutic effect.

The immune milieu

It is now clear that lymphodepletion after immunosuppres-
sive chemotherapy produces profound changes in the cytok-
ine milieu favourable to both T cell and NK cell expansion

and function, particularly in response to a rise in IL-15
[62,95]. The immune milieu after induction chemotherapy
or after conditioning for SCT may thus be favourable
to lymphocyte expansion and enhance the response to
vaccination. Clinical trials giving vaccines early after immu-
nodepleting therapy are therefore worth exploring. Alterna-
tively, vaccines or lymphocyte transfer might be enhanced by
administrating lymphocyte growth factors such as IL-15,
which may soon become available for clinical use.

Regulatory T cells

While regulatory T cells (Treg) perform a useful function in
curtailing side effects from overaggressive T cell responses
to infection, they limit the efficacy of vaccines. Animal
studies confirm the improved anti-leukaemic effect of a DC
vaccine given after Treg have been depleted [102]. In man
Treg depletion can be achieved using Denileukin difitox
(Ontacc), an IL-2-like molecule conjugated to diphtheria
toxin which binds to the alpha chain of the IL-2 receptor
and which is up-regulated on Treg cells, killing the cell when
the receptor is internalized. Given just before vaccination or
T cell infusion (to avoid killing activated T cells) this agent
can increase immune responses to vaccines in an animal
model and is currently being explored in clinical vaccine
trials [103].

Increasing cytotoxic susceptibility of AML

Although the administration of ex-vivo generation of leu-
kaemic DC has not produced significant clinical responses, it
is possible that the administration of appropriate cytokines
such as GM–CSF, M-CSF and interferons could be useful in
rendering the AML target a better antigen-presenting cell by
maturing it towards a DC or by up-regulating MHC expres-
sion [86]. The demethylating agent 5 azacytidine can
up-regulate cancer testis antigens (which includes WT1)
[104]. NK cytotoxicity to AML can be enhanced by valproic
acid and all-trans-retinoic acid which increases NKG2D
ligand expression on the target [105], and by resiquimod,
which up-regulated Toll-like receptors rendering cells more
immunostimulatory [106].

Targeting the AML stem cells

Immunotherapy would clearly have its best chance of cure if
the AML progenitors were targeted. In CML the expression
of some tumour-specific antigens (TSA) is weak in the most
primitive CD90+CD38–CD34+ cell compartment. Treatment
of CML cells with the proteasome inhibitor Bortezomib
renders them more susceptible to NK killing by
up-regulating TRAIL on the target. Such agents could there-
fore play a useful role in enhancing leukaemia elimination
[107].
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The future: co-ordinating immunotherapy with
other treatments

It is unlikely that a single strategy could stand alone as the
sole modality for successful treatment of AML. The role of
induction chemotherapy in achieving leukaemia bulk reduc-
tion while at the same time resetting the immune clock by
inducing lymphopenia is a logical prelude to giving immu-
notherapy to prevent further disease recurrence. We are only
now beginning to appreciate the potential immunostimula-
tory capacity of chemotherapy. For example, fludarabine is
not only an effective anti-leukaemic drug but causes lym-
phoablation which underpins the surge in IL-15 that stimu-
lates NK and T cell recovery [23,95], and 5-azacytidine
increases tumour antigen presentation [104]. Thus, thought-
ful selection of induction regimens may allow synergy with
subsequent immunotherapy. Critical to understanding the
effectiveness of immunotherapy in AML is the monitoring of
minimal residual disease and the immune response to
leukaemia. These biological monitors are more likely to
provide a reliable readout of the success of treatment rather
than relying upon diverse clinical outcome measurements in
diverse patient populations. In this regard, WT1 is rapidly
becoming a standard target for MRD measurement in AML.
Finally, immunotherapy approaches can be combined with
autologous or allogeneic SCT to improve the curative poten-
tial of transplantation, which offers greater opportunity for
leukaemia reduction through the myeloablative preparative
regimen and the GVL effect [108].
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