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archy of effector functions that result in graded responses by 
NK cell populations. Responses display cellular heterogene-
ity and are influenced by environmental cues. This review 
highlights recent knowledge gained on the molecular path-
ways for and regulation of NK cell activation. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Natural killer (NK) cells are considered to represent 
an arm of the innate immune system, as their effector 
functions are controlled by a repertoire of germline-en-
coded receptors that do not undergo somatic recombina-
tion  [1, 2] . However, similar to other lymphocyte subsets 
such as T and B cells, NK cells may manifest adaptive fea-
tures  [3] . NK cells participate in early defense against in-
tracellular microbial infections and several types of tu-
mors and may also be implicated in autoimmunity and 
hypersensitivity reactions  [4–6] . NK cell-mediated resis-
tance to intracellular pathogens and immunosurveil-
lance of tumors involves both interferon (IFN)- �  secre-
tion and perforin-dependent target cell elimination  [7, 8] . 
NK cells may also instruct and shape adaptive immune 
responses through cytokine release or by direct interac-
tion with dendritic cells  [9] . Furthermore, NK cells can 
kill allogeneic cells in the setting of hematopoietic stem 
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 Abstract 
 With an array of activating and inhibitory receptors, natural 
killer (NK) cells can specifically eradicate infected and trans-
formed cells. Target cell killing is achieved through directed 
release of lytic granules. Recognition of target cells also in-
duces production of chemokines and cytokines that can co-
ordinate immune responses. Upon contact with susceptible 
cells, a multiplicity of activating receptors can induce signals 
for adhesion. Engagement of the integrin leukocyte func-
tional antigen-1 mediates firm adhesion, provides signals for 
granule polarization and orchestrates the structure of an im-
munological synapse that facilitates efficient target cell kill-
ing. Other activating receptors apart from leukocyte func-
tional antigen-1 signal for lytic granule exocytosis, a process 
that requires overcoming a threshold for activation of phos-
pholipase C- � , which in turn induces STIM1- and ORAI1-de-
pendent store-operated Ca 2+  entry as well as exocytosis
mediated by the SNARE-containing protein syntaxin-11 and 
regulators thereof. Cytokine and chemokine release follows 
a different secretory pathway which also requires phospho-
lipase C- �  activation and store-operated Ca 2+  entry. Recent 
studies of human NK cells have provided insights into a hier-
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cell transplantation, and thus, have potential in immuno-
therapy of certain malignancies  [10] .

  NK cells and cytotoxic T cells (CTLs) are thought to 
share mechanisms for target cell elimination. Both NK 
cell and CTL cytotoxicity relies on the directed release of 
the contents of lytic granules, which are specialized se-
cretory lysosomes that contain perforin, granzymes and 
Fas ligand  [11, 12] . However, both in vitro and in vivo im-
aging studies comparing target cell recognition by NK 
cells and CTLs suggest some noteworthy distinctions. In 
vitro, CTLs rapidly establish cytoskeletal polarity, where-
as NK cells are more tentative in their interactions with 
target cells  [13] . In vivo, CTLs form stable contacts with 
tumor cells expressing cognate antigen, whereas NK cells 
mainly establish dynamic contacts  [14] . These observa-
tions suggest significant differences in the molecular ma-
chinery underlying NK cell and CTL recognition and 
elimination of target cells.

  Recent studies of NK cell responses have highlighted 
considerable heterogeneity among human peripheral 
blood NK cells and hierarchies in terms of the strength of 
the activating stimuli for induction of specific responses 
 [15–17] . Inside-out signals for leukocyte functional anti-
gen (LFA)-1-mediated adhesion exhibit a low threshold 
for activation, induction of chemokines such as macro-
phage inflammatory protein (MIP)-1 �  requires stronger 
activating stimuli, whereas degranulation and produc-
tion of cytokines such as tumor necrosis factor (TNF)- �  
and IFN- �  display the most stringent requirements for 
induction ( fig. 1 ). Some of the functional heterogeneity in 
NK cell populations can be accounted for by differences 
in cellular differentiation and education  [17–21] . In hu-
mans, relatively immature CD56 bright  NK cells excel at 

cytokine production in response to exogenous cytokines 
such as interleukin (IL)-2, IL-12, IL-15 and IL-18. How-
ever, CD56 bright  NK cells express low levels of perforin, 
and are consequentially less cytotoxic than more mature 
CD56 dim  NK cells, and do not as readily produce cyto-
kines in response to target cell recognition. Transitory 
CD56 dim CD62L + CD57 –  NK cells produce significant 
IFN- �  in response to exogenous cytokines, display high-
er levels of perforin expression and the ability to mediate 
cytotoxicity, and can produce ample amounts of cyto-
kines in response to target cell recognition. Finally, ter-
minally differentiated CD56 dim CD62L – CD57 +  NK cells 
express high levels of perforin, display potent cytotoxic 
capacity and exhibit strong production of cytokines in 
response to target cell recognition. However, the response 
of CD56 dim CD62L – CD57 +  NK cells to exogenous cyto-
kines is blunted. In parallel to the continuous maturation 
process, recognition of self major histocompatibility 
complex class I molecules by inhibitory receptors poten-
tiates NK cell responses. However, superimposing differ-
entiation and education processes on NK cell functional-
ity does not fully explain the heterogeneity in NK cell 
responses. Studies have revealed that the thresholds for 
effector responses are highly dynamic and may use dif-
ferent molecular pathways depending on cytokine activa-
tion  [22] . Further molecular insights are required into the 
factors regulating the delicate balance in NK cell respon-
siveness, with too little possibly resulting in impaired im-
munity to infection and predisposition to malignancies, 
and too much potentially eliciting autoimmunity or hy-
persensitivity reactions. Here, we review recent insights 
into the molecular mechanisms of NK cell activation 
upon interaction with target cells.

LFA-1 activation
MIP-1β

IFN-γ
TNF-α
Degranulation

Strength of activating stimuli
+++–

  Fig. 1.  Relative signal strength required for induction of different 
NK cell responses. The figure depicts the relative signal strength 
required for induction of different NK cell responses such as in-
side-out signals for LFA-1 (detected as LFA-1 conformational 
changes), degranulation (surface expression of CD107a), chemo-
kine secretion (MIP-1 �  and MIP-1 �  secretion) and cytokine se-

cretion (IFN- �  and TNF- � ). With regard to the kinetics of differ-
ent responses, conformational changes in LFA-1 can be detected 
within seconds of activation, degranulation occurs within min-
utes, chemokine secretion within half an hour, and cytokine se-
cretion after approximately 6 h of stimulation. Adapted from Fau-
riat et al.  [17] .  
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  NK Cell Receptor Signaling 

 A multitude of activating NK cell receptors that belong 
to different receptor families and contain highly diver-
gent cytoplasmic signaling domains have been described. 
The signaling pathways orchestrated by many activating 
NK cell receptors are not well defined  [23, 24] . In con-
trast, structurally distinct inhibitory NK cell receptors all 
contain immunoreceptor tyrosine-based inhibition mo-
tifs. The signaling by such motifs has been extensively 
studied and is mainly mediated through activation of ty-
rosine phosphatases such as SHP-1 that can dephosphor-
ylate the guanine exchange factor VAV1, as well as 
through phosphorylation of the adaptor Crk by the tyro-
sine kinase c-Abl  [25, 26] . Some inhibitory receptors en-
gage other negative regulators such as SHIP, an inositol 
5-phosphatase, and the Src family tyrosine kinase CSK 
that phosphorylates and negatively regulates other Src 
family kinases. NK cell activating and inhibitory recep-
tors, their ligands and proximal signaling are detailed in 
 figure 2 . In the following paragraph, more detailed back-
ground is provided for select activating receptors ex-
pressed on NK cells.

  The low-affinity Fc receptor CD16 is a prototypical 
NK cell activating receptor that can facilitate antibody-
dependent cellular cytotoxicity against IgG-coated cells. 
Engagement of CD16 induces Src family kinase-depen-
dent phosphorylation of immunoreceptor tyrosine-based 
activation motifs on the adaptor chains CD3 �  and Fc � R � , 
which in turn recruit and activate SYK and ZAP-70 tyro-
sine kinases for downstream signaling  [27] . Engagement 
of CD16 on NK cells is sufficient to induce NK cell de-
granulation  [15] . Other NK cell receptors have been 
termed ‘coactivation receptors’, as engagement of each re-
ceptor alone is insufficient to induce activation in freshly 
isolated peripheral blood NK cells, whereas engagement 
of specific pairwise combinations of receptors can induce 
synergistic intracellular Ca 2+  mobilization as well as de-
granulation and cytokine production  [16, 28] . An exam-
ple of such a coactivating receptor pair is 2B4 (CD244) 
and DNAM-1 (CD226). 2B4 contains cytoplasmic immu-
noreceptor tyrosine-based switch motifs. These motifs 
are phosphorylated and can recruit either phosphatases 
for negative regulation of NK cell function, or, via the 
adaptor SAP, the SRC kinase Fyn for positive regulation 
of NK cell function  [29–31] . In human NK cells, 2B4 is 
typically activating unless cells are deficient in SAP, 
which is the case in the primary immunodeficiency X-
linked lymphoproliferative type 1 caused by mutations in 
 SH2D1A   [29, 32] . The cytoplasmic domain of DNAM-1 is 

phosphorylated by PKC  [33] . Signaling further down-
stream by DNAM-1 in NK cells is not well characterized. 
NKG2D is another coactivating receptor that may syner-
gize with 2B4. NKG2D is associated with the adaptor 
DAP10 and signals through recruitment of either phos-
phatidylinositol-3-kinase (PI3K) or the adaptor Grb2 
 [34] .

  Taken together, potent NK cell effector functions such 
as cytotoxicity and cytokine production require dynam-
ic integration of signals derived from multiple receptors. 
The following sections will focus on advances in our un-
derstanding of the molecular processes underlying NK 
cell effector responses.

  Contact and Adhesion 

 A first step in responses to pathogen infections or 
tumors involves recruitment of NK cells to the site of 
inflammation, infection or transformation. NK cells 
express several chemokine receptors, and the mecha-
nisms of NK cell trafficking to inflamed tissues have 
recently been reviewed elsewhere  [35] . With regard to a 
role for NK cells as sentinels in immunosurveillance of 
virally infected or transformed cells, the degree to which 
NK cells constitutively traffic to noninflammed tissues 
is not well understood. However, how NK cells detect 
and discriminate target cells has been extensively stud-
ied. The initial contact between NK cells and a target 
cell may involve any of a number of receptors. A variety 
of activating receptors, including CD16, 2B4, NKG2D, 
DNAM-1 and LFA-1 itself, can rapidly induce inside-
out signals for activation of LFA-1 in freshly isolated hu-
man NK cells, thus promoting adhesion  [16] . As op-
posed to activating receptors that promote adhesion to 
target cells, inhibitory receptors can abrogate target cell 
adhesion  [36] . For example, coengagement of NKG2A 
by its ligand HLA-E on target cells overrides inside-out 
signals for activation of LFA-1 from multiple activating 
NK cell receptors  [16] . Notably, LFA-1 conformation-
specific monoclonal antibodies display a heterogeneous 
staining pattern on freshly isolated human NK cells, re-
vealing that a subset of NK cells exhibit LFA-1 in an ac-
tive, ligand-binding, extended conformation  [16] . Treat-
ment of NK cells with pharmacological inhibitors of 
SRC family kinases, PI3K, or phospholipase C (PLC)- �  
diminishes the basal level of extended LFA-1  [16] . Thus, 
tonic signals dynamically maintain an active LFA-1 
conformation in a subset of NK cells, consistent with the 
signaling-dependent ability of resting NK cells to bind 
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intercellular adhesion molecule 1  [37] . The presence of 
active, extended LFA-1 on freshly isolated human NK 
cells, a feature not shared with resting human T cells, 
may in part explain the more dynamic nature of NK cell 
interactions with target cells as compared to that of CTL 
 [13, 14] .

  The signals for inside-out activation of LFA-1 and 
adhesion induced upon contact with the multitude of 
activating receptors in NK cells are not well defined 
 [24] . As previously emphasized, the activating NK cell 
receptors have distinct cytoplasmic domains, and thus, 
are likely to act as platforms for different signaling com-

Receptor Prox. signaling  Ligand
CD16 (FcgRIIIA)   CD3ζ/FcεRγ - SYK   IgG Elimination of antibody-coated cells 
NKp30 (CD337) CD3ζ - SYK B7-H3  Surveillance of genotoxic stress/transformation
NKp46 (CD335) CD3ζ  - SYK    ? Surveillance of mitotic cells
KIR2DS1 (CD158h)  DAP12 - SYK    HLA-C (C2, low affinity) ? 
KIR2DS2 (CD158j)   DAP12 - SYK   ? ?
KIR2DS4 (CD158i)  DAP12 - SYK HLA-A, -C (low affinity) ?
KIR2DS5 (CD158g)  DAP12 - SYK ? ?
KIR3DS1 (CD158e2)  DAP12 - SYK HLA-B (Bw4 low affinity) ?
NKG2C (CD94/159c)       DAP12 - SYK HLA-E (low affinity) ? 
NKp80 SYK AICL NK cell-myeloid crosstalk
NKp65 ? KACL ?
NKG2D (CD314) DAP10 - PI3K,Grb2 ULBPs, MICA, MICB Surveillance of tumor cells and genotoxic stress
2B4 (CD244) SAP, FYN, 3BP2 CD48 Interaction with hematopoetic cells
CRACC (CD319)  EAT-2 CRACC (CD319) Interaction with hematopoetic cells
NTB-A SAP, EAT-2 NTB-A Interaction with hematopoetic cells
CD2 CD2AP LFA-3 (CD58) Interaction with hematopoetic and endothelial cells
DNAM-1 (CD226) ? CD155, CD112 Surveillance of tissue integrity
CD7 ? SECTM1, galectin ?
CD59 ? C8, C9 Complement regulatory protein
BY55 (CD160) ?  HLA-C ?
KIR2DL4 (CD158d) DNA-PKcs, FcεRγ HLA-G (soluble) Trophoblast-induded vascular remodeling?
CD44 ? Hyaluronan Interaction with extracellular matrix
LFA-1 (aLb2, CD11a/18)  CD3ζ - SYK, talin ICAM-1–5 Cellular recruitment, adhesion, polarization
MAC-1 (aMb2, CD11b/18) ? ICAM-1, iC3b, fibrinogen Adhesion
CD11c/18 ? ICAM-1, iC3b  Adhesion
VLA-4 (a4b1, CD49d/29) ? VCAM-1, fibronectin Cellular recruitment, adhesion to matrix
VLA-5 (a5b1, CD49e/29) ?   Fibronectin   Adhesion to extracellular matrix
KIR2DL1 (CD158a) SHP-1, -2 HLA-C (C2 group) Assess loss of MHC class I alleles 
KIR2DL2/3 (CD158b)  SHP-1, -2 HLA-C (C1 group) Assess loss of MHC class I alleles 
KIR2DL5 (CD158f)             SHP-1, -2 ? ?
KIR3DL1 (CD158e1) SHP-1, -2 HLA-B alleles Assess loss of MHC class I alleles
KIR3DL2 (CD158k) SHP-1, -2 HLA-A (A3, A11) Assess loss of MHC class I alleles 
KIR3DL3 (CD158z)             SHP-1, -2 ? ?
LIR-1/ILT2 (CD85j) SHP-1, -2, CSK HLA (multiple) Assess loss of MHC class I 
NKG2A (CD94/159a)  SHP-1, -2 HLA-E    Gauge MHC class I expression 
KLRG1 SHP-1, -2, SHIP E/N/R-cadherin Assess loss of tissue integrity 
NKR-P1 (CD161) ? LLT1 ? 
TIGIT ? CD155, CD112 Downmodulation of responses
CEACAM-1 (CD66a) SHP-1, -2   CEACAM ?
Siglec-7 (CD328) SHP-1, -2  Sialic acid ?
Siglec-9 (CD329) SHP-1, -2  Sialic acid ?
LAIR-1 (CD305)             SHP-1, -2, CSK Collagen Control activation in extracellular matrix
IRp60 (CD300a) SHP-1, -2, PI3K ? ?

IT
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  Fig. 2.  Overview of NK cell activating and inhibitory receptor sig-
naling, ligands and function. The strongest activating receptors 
associate with immunoreceptor tyrosine-based activation motif 
(ITAM)-coupled adaptor proteins (dark green). Other activating 
receptors contain hemi-immunoreceptor tyrosine-based activa-
tion (ITAM) motifs in their cytoplasmic domains (light green). A 
number of other receptors have been implicated in NK cell acti-

vation (yellow), some of which are coactivating receptors. Adhe-
sion receptors (blue) may also contribute signals to NK cell activa-
tion. Inhibitory receptors (yellow) intersect activating signals via
immunoreceptor tyrosine-based inhibition motifs (ITIMs) in 
their cytoplasmic domains that generally recruit phosphatases. 
MHC = Major histocompatibility class. 
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plexes. Live cell imaging of NK cells on supported pla-
nar lipid bilayers carrying ligands for LFA-1, NKG2D, 
2B4 and CD16 has shown that these receptors induce 
diverse behaviors  [38] . NK cells actively crawl over sur-
faces with ligands for LFA-1 or NKG2D, ligands for 2B4 
induce receptor clustering but not active movement, 
and ligands for CD16 induce synapse formation and de-
granulation. With regard to signals for inside-out acti-
vation of LFA-1, phosphorylation and activation of the 
guanine exchange factor and actin regulator VAV1 have 
been postulated to be a common denominator of sig-
naling pathways downstream of activating receptors,
including LFA-1 itself. Concomitantly, VAV1 phosphor-
ylation provides a point at which inhibitory receptor 
signals can oppose signals from activating receptors. 
Specifically, phosphorylated VAV1 is a substrate of SHP-
1  [39] . In terms of cell morphology and behavior, such 
inhibitory signals in smaller, asymmetrical synapses fa-
cilitate migration  [40] . Recently, a study by Awasthi et 
al.  [41]  found that NK cells from mice deficient in the 
Ras family GTPase Rap1b show defective accumulation 
of LFA-1 upon binding to surfaces coated with the li-
gand intercellular adhesion molecule 1 or stimulation 
with phorbol myristate acetate and ionomycin. Interest-
ingly, Rap1b deficiency did not impair phosphoryla-
tion of VAV1 upon engagement of NKG2D or target cell 
lysis. However, activation of Rap1b-deficient NK cells 
resulted in reduced phosphorylation of p21- activated 
kinases 1, 2 and 3, a selective impairment in phosphor-
ylation of the mitogen-activated protein kinase ERK, as 
well as in defective secretion of chemokines and cyto-
kines. Furthermore, it was demonstrated that Rab1b 
 colocalizes with the microtubule-organizing center 
(MTOC), regulates the architecture of the MTOC and 
facilitates the formation of an IQGAP1-dependent peri-
nuclear signalosome which is a site of ERK phosphory-
lation  [41] . Directly linked to the extension of the LFA-1 
ectodomain, talin binding to the cytoplasmic tail of 
LFA-1 stabilizes the active, ligand-binding extended 
conformation. Talin-1-deficient mouse NK cells are de-
fective in LFA-1-mediated adhesion  [42] . Interestingly, 
Cdc42 and Wiskott-Aldrich syndrome protein (WASP) 
are required for chemokine-induced inside-out signals 
in freshly isolated human NK cells, as NK cells from 
WASP patients display defective activation of LFA-1 
 [43] . In human IL-2-expanded NK cells, knockdown of 
the adaptor protein CrkL impaired NK cell adhesion, 
granule polarization and granule secretion downstream 
of NKG2D engagement  [44] . CrkL was shown to facili-
tate NKG2D signaling downstream of PI3K activation 

and, in turn, activate Rap1. Moreover, phosphorylation 
of HS1, the hematopoietic cell-specific homolog of cor-
tactin, at Tyr397, is required for LFA-1-dependent adhe-
sion by human IL-2-expanded NK cells upon engage-
ment of LFA-1 and NKG2D  [45] . In this setting, muta-
tion of Tyr397 to Phe397 attenuated phosphorylation of 
VAV1.

  Together, these data suggest important roles for WASP 
and HS1 in the pathways leading to VAV1 phosphoryla-
tion and LFA-1-dependent adhesion, possibly also involv-
ing CrkL and Rap1. Rap1 participates in inside-out sig-
nals for LFA-1 in T cells  [46] . Future experiments need to 
address how membrane-proximal signals downstream of 
specific NK cell activating receptors couple to signals for 
NK cell adhesion, including inside-out signals for ligand-
binding, extended LFA-1 and signals for clustering of 
LFA-1 that together may cooperatively regulate NK cell 
adhesion to target cells.

  Granule Polarization and Maturation 

 A key role for LFA-1 in promoting perforin-contain-
ing granule polarization towards the target cell, facilitat-
ing efficient cytotoxicity, has previously been shown  [15, 
47] . Moreover, such granule polarization towards the 
immune synapse is the result of two different molecular 
processes. First, granules rapidly converge in dynein-de-
pendent, minus end-directed motion to the MTOC  [48] , 
as initially described in T cells  [49] . In the NK cell line 
YTS, antibody-mediated blockade of LFA-1 impairs 
granule convergence at the MTOC upon target cell con-
tact, suggesting that LFA-1-mediated signals facilitate 
this process  [48] . Second, following convergence of the 
granules and within minutes, the MTOC and granules 
polarize towards the interaction site in an LFA-1-depen-
dent manner  [15, 48] . In an elegant set of experiments, 
Mace and colleagues  [42, 50]  generated mouse NK cells 
from embryonic stem cells of knockout mice to delineate 
LFA-1-mediated outside-in signals. These experiments 
have demonstrated that talin is required for recruitment 
of WASP, Arp2/3, vinculin and actin, as well as for po-
larization of lytic granules downstream of LFA-1 en-
gagement. Furthermore, WASP is required for the accu-
mulation of F-actin at the synapse, and the recruitment 
of WASP is facilitated by talin-dependent recruitment 
and activation of phosphatidylinositol 4-phosphate 
5-kinase type I  �  (PI5KI � )  [50] . The product of PI5KI �  
is phosphatidylinositol (4,5)-bisphosphate. Contrasting 
results in mouse cells, silencing of PI5KI �  or PI5KI �  in 
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human NK cells has previously been reported to impair 
lytic granule exocytosis but not granule polarization 
 [51] . Moreover, silencing of WASP-interacting protein in 
the human NK cell line YTS impairs lytic granule polar-
ization but does not affect formation of conjugates with 
target cells  [52] . Interestingly, the second messenger dia-
cylglycerol has been shown to be required for MTOC 
polarization and cytotoxicty by CTL  [53] , but to what 
extent diacylglycerol regulates LFA-1-mediated MTOC 
polarization in NK cells remains to be established. Re-
cently, signaling for granule polarization by LFA-1 in IL-
2-expanded human NK cells was shown to also involve 
CD3 �  chain phosphorylation, SYK recruitment and ac-
tivation, as well as PLC- �  activation  [54] . Activation of 
PLC- �  results in hydrolysis of phosphatidylinositol 
(4,5)-bisphosphate to generate the second messengers 
diacylglycerol and inositol (1,4,5)-trisphosphate. Down-
stream of LFA-1, PLC- �  activation leads to PKC activa-
tion and pharmacological inhibition of PLC- � -abrogat-
ed granule polarization  [54] . Of note, also in YTS cells, 
the ubiquitously expressed protein phosphate 1 regula-
tory subunit 9B is recruited to immune synapses upon 
LFA-1 engagement and is reported to be required for 
maintenance of the F-actin cytoskeleton  [55] . Upon rec-
ognition of susceptible target cells, the tyrosine kinase 
PYK2 is also recruited to the immune synapse, and 
transfection of dominant negative PYK2 blocks MTOC 
and paxillin movement to the synapse  [56] . Recently, 
pharmacological inhibition or knockdown of the mito-
gen-activated protein kinase JNK was also shown to be 
required for paxillin recruitment to the immune syn-
apse, in addition to MTOC and granule polarization in 
human NK cells  [57] .

  In an interesting study, Butler and Cooper  [58]  com-
pared the role of the actin nucleators Arp2/3 and hDia1 
for cytotoxicity by IL-2-expanded NK cells. Knockdown 
of Arp2/3 in human NK cells diminished cell adhesion, 
reduced actin assembly at the immune synapse and im-
paired cytotoxicity. Specifically, Arp2/3 knockdown af-
fected VAV1 activation and recruitment of active PYK2 
downstream of LFA-1 engagement. In contrast, knock-
down of hDia1 did not disrupt actin assembly at the im-
mune synapse, but reduced cytoxicity by impairing lytic 
granule polarization.

  In summary, these studies suggest pathways involving 
talin, WASP, WASP-interacting protein, PYK, JNK and 
paxillin, as well as CD3 � , SYK and PLC- �  for granule po-
larization. Furthermore, how the formin hDia1 contrib-
utes to LFA-1-mediated polarization in NK cells needs to 
be further assessed.

  Granule Maturation and Exocytosis 

 Vesicle exocytosis is a requirement for NK cell cyto-
toxicity  [28] . A pathway involving PI3K, RAC1, p21-acti-
vated kinase 1 and ERK has been reported to play a criti-
cal role in cytotoxicity mediated by the NK cell line NK92 
and IL-2-expanded NK cells  [59] . More recent studies of 
knockout mice have demonstrated an essential role for 
PLC- �  in granule exoctyosis  [60, 61] . NK cells from these 
mice adhered to target cells, polarized granules, but failed 
to mediate cytotoxicity. Following activation of PLC- � , 
inositol (1,4,5)-trisphosphate can trigger cytoplasmic re-
lease of Ca 2+  from the endoplasmic reticulum (ER). En-
gagement of CD16 is sufficient to induce robust intracel-
lular Ca 2+  mobilization, whereas several other receptors 
do not. Rather, coactivation receptors trigger intracellu-
lar Ca 2+  mobilization when engaged in specific pairwise 
combinations  [28] . Recent data suggest that the molec-
ular basis for such coactivation involves overcoming a 
threshold for activation of VAV1 that is set by the ubiqui-
tin ligase c-Cbl  [62] . VAV1 overexpression or c-Cbl 
knockdown each circumvented the necessity for synergy, 
as engagement of either NKG2D or 2B4 alone became 
sufficient for activation. Notably, inhibition of NK cell 
cytotoxicity by NKG2A binding to HLA-E on target cells 
was dominant over synergistic activation, even after c-
Cbl knockdown. Following PLC- �  activation, inositol 
(1,4,5)-trisphosphate-mediated Ca 2+  release from the en-
doplasmic reticulum results in depletion of Ca 2+  stores 
and aggregation of the endoplasmic reticulum Ca 2+  sen-
sor STIM1. Aggregation of STIM1 transactivates the 
plasma membrane Ca 2+  release-activated Ca 2+  channel 
ORAI1, leading to store-operated Ca 2+  entry (SOCE). Re-
markably, NK cells from patients with mutations in either 
STIM1 or ORAI1 display defective degranulation, dem-
onstrating a requirement for ORAI1-mediated SOCE for 
lytic granule exocytosis  [63] . Importantly, ORAI1 defi-
ciency or pharmacological inhibition of SOCE does not 
affect signals for adhesion or granule polarization  [63] . 
How signals for PLC- �  activation by LFA-1 and CD16 se-
lectively induce polarization or granule release, respec-
tively, remains to be elucidated  [54] .

  The requirement for SOCE in NK cell exocytosis has 
parallels with the requirement of high Ca 2+  concentra-
tions for exocytosis of vesicles in neurons  [64] . In neu-
rons, Ca 2+ -binding proteins that facilitate exocytosis are 
synaptotagmin and Munc13-1. The Ca 2+ -binding pro-
teins that facilitate NK cell or CTL exocytosis have so far 
not been clearly defined. Synaptotagmin VII has been 
proposed to be a candidate Ca 2+  sensor for lytic granule 
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exocytosis based on experiments assessing the cytotoxic 
function of mouse synaptotagmin VII-deficient CTL 
 [65] . Autosomal recessive mutations in the gene encoding 
Munc13-4, a homolog of neuronal Munc13-1, are asso-
ciated with early-onset hemophagocytic lymphohistio-
cytosis  [66] . The clinical presentation of Munc13-4
deficiency is comparable to that of perforin deficiency, 
documenting an important role for cytotoxic lympho-
cytes in maintaining immune homeostasis. Importantly, 
Munc13-4 deficiency results in defective NK cell cytotox-
icity  [22, 67] . Because Munc13-4 contains two C2 Ca 2+ -
binding domains, Munc13-4 might also represent a Ca 2+  
sensor for cytotoxic lymphocyte exocytosis. Further-
more, deficiency in the SNARE motif containing protein 
syntaxin-11 (Stx11) or the binding partner and regulator 
Munc18-2, as well as deficiency in the small GTPase
Rab27a, abolishes degranulation by freshly isolated pe-
ripheral blood NK cells  [22, 68–70] , in line with a clinical 
phenotype of hemophagocytic lymphohistiocytosis. In 
Rab27a-, Munc13-4- and Stx11-deficient cytotoxic lym-
phocytes, lytic granules still polarize towards the target 
cell  [22, 66, 71] . In CTL, GTP-bound Rab27a can bind the 
synaptotagmin-like proteins SLP1 and SLP2 and might 
facilitate tethering of lytic granule-associated Rab27a to 
the plasma membrane  [72, 73] . Munc13-4 is thought to 
mediate priming of the granules for vesicle fusion  [66] , as 
Munc13-1 does through interactions with Stx1 in neu-
rons  [64] . Stx11 is considered to function in the granule 
fusion with the plasma membrane. Importantly, mem-
brane fusion is energetically demanding and requires the 
force produced through zippering of a 4-strand molecu-
lar complex of SNARE domains from 3 or 4 different pro-
teins. The interaction partners of Stx11 have not been de-
fined. SNAP23, containing two SNARE domains, has 
been hypothesized to localize with Stx11 on the plasma 
membrane and facilitate fusion through lytic granule-
bound VAMP7 or VAMP8  [65] . Several steps in the path-
way leading to lytic granule release remain obscure and, 
thus, represent a challenge for future research.

  Recent studies in CTLs and NK cells have revealed 
that neither Rab27a nor Munc13-4 is constitutively asso-
ciated with lytic granules. Rather, they colocalize with 
perforin-containing granules following cellular activa-
tion  [74, 75] . Although Munc13-4 is an effector of GTP-
bound Rab27a, Rab27a or Munc13-4 colocalization was 
preferentially induced by engagement of LFA-1 or activat-
ing receptors such as CD16, respectively  [75] . These ob-
servations reveal multilayered control of lytic granule 
exocytosis, which might represent a mechanism for pre-
venting inappropriate release of such deadly proteins. 

Furthermore, results suggest that distinct endosomal 
compartments fuse prior to lytic granule fusion with the 
plasma membrane  [74, 75] . The precise nature and raison 
d’être for such endosomal fusion events remains to be 
investigated.

  Besides intracellular Ca 2+  mobilization, evidence sug-
gests that other molecular pathways govern granule exo-
cytosis and thus the efficiency of lymphocyte cytotoxic-
ity. ERK has long been implicated in lytic granule exocy-
tosis  [28] . The Ras guanyl nucleotide-releasing protein-1 
contributes to cytotoxicity and cytokine production in 
IL-15-expanded NK cells and acts downstream of PLC- � , 
integrating Ca 2+  and diacylglycerol signals for activation 
of the Ras-ERK pathway  [76] . Moreover, the mitogen-
activated protein kinase scaffolding protein KSR1 is re-
quired for optimal ERK activation. KSR-deficient mouse 
NK cells displayed no defect in the formation of conju-
gates with target cells, but lytic granule polarization and 
target cell killing was impaired  [77] . Lytic granule exocy-
tosis was not directly assessed.

  Finally, for efficient cytotoxicity, lytic granules must 
traverse the actin-rich immunological synapse for exocy-
tosis to occur. The ATP-dependent actin motor protein 
myosin IIA has been shown to associate with lytic gran-
ules in NK cells  [78] . NK cells from humans with the 
May-Hegglin anomaly caused by autosomal dominant 
mutations in the gene encoding myosin IIA display re-
duced NK cell degranulation and cytotoxicity. Thus, my-
osin IIA may play a role in mediating lytic granule actin 
traversing for exocytosis.

  In summary, biological and genetic experiments have 
identified a set of proteins required for lytic granule exo-
cytosis. Still, much remains to be elucidated in terms
of how signals for granule polarization, maturation and 
exocytosis are intricately regulated by membrane proxi-
mal signaling events, bifurcating and converging at criti-
cal signaling nodes.

  Chemokine and Cytokine Production 

 Target cell recognition by freshly isolated human NK 
cells induces expression of a set of chemokines, including 
MIP-1 � , MIP-1 �  and RANTES, as well as cytokines 
TNF- �  and IFN- �   [17] . Chemokines are rapidly induced 
within 1 h of stimulation, whereas secretion occurs sev-
eral hours after activation. Importantly, experiments 
varying the signaling input for NK cell activation have 
revealed a hierarchy in requirements for induction of che-
mokines and cytokines, with chemokines induced by 
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