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Ahallmarkofacute inflammation involves the recruitmentof polymor-
phonuclear leukocytes (neutrophils) to infected or injured tissues. The
processes underlying this recruitment are complex, and include mul-
tiplemechanisms of intercellular communicationbetweenneutrophils
and the inflamed tissue. In recent studies of the systemic and pulmo-
nary vasculature, interest has increased in novel forms of intercellular
communication, such as microparticle exchange and gap junctional
intercellular communication. To understand the roles of these novel
forms of communication in the onset, progression, and resolution of
inflammatory lung injury (suchasacuterespiratorydistresssyndrome),
we review the literature concerning the contributions of microparticle
exchangeandgapjunctional intercellularcommunicationtoneutrophil–
alveolar crosstalk during pulmonary inflammation. By focusing on
these cell–cell communications, we aim to demonstrate significant
gaps of knowledgeand identify areas of considerable need for further
investigations of the processes of acute lung inflammation.
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Although investigations of acute respiratory distress syndrome
(ARDS) have yet to yield an efficacious pathophysiology-
targeted therapy, they have provided important insights into the in-
tercellular communications regulating neutrophil activation and al-
veolar transmigration. These communications include juxtacrine
and paracrine (e.g., chemokines, cytokines, and proteinases), cross-
talk between neutrophils and lung parenchymal cells, and the signal-
ing conducted through cell-surface receptors such as leukocyte
integrins and cognate adhesion molecules (e.g., intercellular adhe-
sion molecules) expressed by lung parenchymal cells (1). The past
decade has seen an increasing recognition of alternative forms of
intercellular communications during the onset and resolution of in-
flammatory lung disease. These communications include micropar-
ticle exchange as well as gap junctional intercellular communication

(GJIC). This Perspective will focus on these alternative forms of
communication between neutrophils and lung parenchymal cells
during the genesis of ARDS, highlighting opportunities for fur-
ther investigations.

MICROPARTICLE EXCHANGE

Microparticles are spherical, lipid bilayer–encapsulated extra-
cellular bodies ranging from 50–1,000 nm in diameter. Micro-
particles can be secreted by almost every cell type, including
lung parenchymal cells and inflammatory cells. Multiple forms
of microparticles exist, reflecting different modes of production.
“Exosomes” and “shedding vesicles” are derived from living cells,
whereas “apoptotic bodies” are secreted by apoptotic and/or ne-
crotic cells (2). Exosomes have an endosomal origin, and are
stored as intraluminal vesicles within multivesicular bodies (3).
Upon stimulation, exosomes are secreted by fusion with the cell
membrane, forming a relatively homogenous group of microparti-
cle sizes (50–150 nm). In contrast, shedding vesicles and apoptotic
bodies derive from the budding of small cytoplasmic protrusions
from the plasma membrane (4). These represent a more hetero-
geneous group of membrane vesicles (50–1,000 nm).

Although the microparticle release rate in resting cells is very
low, the secretion of shedding vesicles can be induced by various
inflammatory stimuli associated with altered intracellular calcium
concentrations (5, 6). In contrast, exosome secretion can occur
independently of any calcium influx, and may happen spontane-
ously (7, 8). Released microparticles may be ultimately internalized
by local or distant recipient cells via mechanisms ranging from
specific receptor–ligand interactions (indicating a targeted, cell-
specific delivery) to nonspecific internalization via endocytosis or
simple fusion with the cell membrane (9–12). Microparticles may
therefore serve as a circulating “storage pool” of bioactive effectors
(13) that mediate intercellular crosstalk and the horizontal transfer
of genetic material, including microRNAs (miRNA) (14). As such,
microparticles may participate in biological functions (including
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CLINICAL RELEVANCE

The acute respiratory distress syndrome (ARDS) is a common
yet highly morbid critical illness. Despite more than 40 years
of investigation, no effective disease process–targeted treat-
ment for ARDS exists. By highlighting promising new
mechanisms of cell–cell communications in ARDS, we
hope to identify new avenues of research that could yield
novel therapeutic approaches.
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hemostasis, cell activation, and inflammation) relevant to the path-
ogenesis of ARDS (15).

GAP JUNCTIONAL INTERCELLULAR COMMUNICATION

In contrast to the distant interactions enabled by microparticle ex-
change, gap junctions allow for contiguous cell–cell communication.
Gap junctions are formed from cell-surface connexins, a 20-mem-
ber family of transmembrane proteins (16). Connexins associate
into hexagonal connexons, which constitute 2–3-nm-diameter pores
permeable to small (, 1 kD) molecules. A connexon may exist in
an unpaired state (“hemichannel”) or pair with the connexon of
a neighboring cell, forming a gap junction capable of direct cyto-
plasmic exchange. Recent studies have demonstrated the impor-
tance of gap junctional intercellular communication (GJIC) to the
onset (17) and resolution (18) of pulmonary inflammation.

RELEVANCE OF ALTERNATIVE COMMUNICATION
MECHANISMS TO NEUTROPHIL FUNCTION

The physiological significance of microparticle exchange and
GJIC has been largely demonstrated in cell types other than neu-
trophils. However, available evidence supports the relevance of
these processes to neutrophil function during inflammation.

Neutrophils rapidly shedmicroparticles in response to inflam-
matory stimuli (Figure 1) (19, 20). Shed neutrophil micropar-
ticles are heterogeneous, ranging from 50–200 nm in size (21).
Neutrophil microparticles typically display surface phosphatidylser-
ine as well as neutrophil markers such as selectins, CD15, CD64,
CD66b, and CD66e (20, 22). As will be described, neutrophil-
derived microparticle exchange exerts a significant impact on pro-
cesses germane to organ inflammation, including inflammatory cell
adhesion, cytokine production, and chemotaxis.

In contrast to microparticle exchange, the participation of neu-
trophils in GJIC is less well understood. Activated neutrophils ex-
press transmembrane connexins, including connexins 43 (23, 24)
and 40 (25, 26). These connexins are capable of forming cell-
surface connexons, which, if unpaired, function as channels for
the extracellular secretion of small molecules such as ATP (24).
Should neutrophil connexons link with the connexons of an ad-
jacent cell, GJIC may occur. Indeed, neutrophil–neutrophil (25)
and neutrophil–endothelial (23, 26) GJIC has been documented.

DO THESE COMMUNICATIONS CONTRIBUTE
TO ARDS?

Although microparticle exchange and GJIC may be of relevance
to neutrophil physiology, their contributions to the pathogenesis

of ARDS remain under investigation. We will discuss studies ex-
amining the activated neutrophil at several key stages in the evo-
lution of lung inflammation: (1) the activated, circulating neutrophil,
(2) the endothelial-adherent neutrophil, (3) the transmigrating neu-
trophil within the interstitial space, and (4) the activated neutrophil
within the alveolar space.

Circulating Neutrophils during Systemic Inflammation

Systemic inflammatory diseases are characterized by rapid changes
in circulating neutrophil morphology and physiology (27), thought
to be mediated by the circulating cytokines and chemokines char-
acteristic of the systemic inflammatory response syndrome (SIRS).
The role of alternative forms of intercellular communication is less
clear.
Neutrophil interactions with non-neutrophil microparticles.

Neutrophils are known to interact with circulatingmicroparticles
of nonleukocyte origin (28–30). Opportunities for neutrophil–
microparticle interaction are increased during SIRS, given a sig-
nificant increase in circulating endothelial and platelet micro-
particles (28, 31).

Septic shock is associated with a significant increase in circu-
lating platelet microparticles (31), with evidence of increased
microparticle–neutrophil interactions (30). These complexes, al-
though linked to improved patient outcomes, are also associated
with augmented leukocyte activation (30). Indeed, platelet micro-
particles can activate neutrophils (29, 32, 33) and, in doing so,
facilitate the progression of intravascular coagulation (34).

Similarly, circulating endothelial microparticles are more
abundant in patients with sepsis (31), and complex with circu-
lating leukocytes (28). Monocyte–endothelial microparticle com-
plexes are associated with improved patient outcomes in sepsis
(30). Although neutrophil–endothelial microparticle interactions
have been similarly observed in patients with SIRS (28), the
physiological impact of these interactions is largely unexplored.

Circulating erythrocyte microparticles may additionally activate
neutrophils duringARDS (35), a finding of particular interest to the
pathogenesis of transfusion-related acute lung injury (TRALI).
Neutrophil production of microparticles. Neutrophils not only

receive communications via microparticle exchange, but also
produce microparticles, influencing the function of several cell
types relevant to lung injury (Table 1). Consistent with these
diverse effects, the overall clinical impact of neutrophil-derived
microparticles is uncertain. Circulating leukocyte and erythrocyte
microparticles isolated from septic rats induced hemodynamic in-
stability in normal rats (43). In contrast, nonplatelet microparticles
isolated from humans with sepsis improved the vasoconstrictor
response of murine aortic rings (31). Indeed, high circulating con-
centrations of leukocyte-derived microparticles were associated
with improved outcomes in ARDS (44).
Direct cell–cell contact between neutrophils and other circulat-

ing cells. Intravascular neutrophils may directly interact with
other circulating cells during systemic inflammatory responses.
Neutrophils form clusters in response to inflammatory stimuli,
with evidence of homotypic neutrophil GJIC (25). Neutrophils
may additionally complex with platelets during sepsis (45). Be-
cause platelets are capable of forming functional connexons (46,
47), these complexes may allow for neutrophil–platelet GJIC.
Interestingly, the presence of circulating platelet–leukocyte conju-
gates was associated with improved outcomes in septic shock (30).
Whether this benefit indicates a protective effect of circulating
platelet–leukocyte complexes, or rather reflects a harmful effect
of their tissue sequestration, remains uncertain (45, 48). Indeed,
platelet–neutrophil complexes release extracellular DNA, forming
neutrophil extracellular traps implicated in TRALI (49). The pres-
ence and relevance of platelet–neutrophil GJIC in these processes
are unexplored.

Figure 1. Microparticle release from activated neutrophils. Scanning
electron micrograph of inactive (a) and FMLP-activated (b) neutrophils.

Arrowheads (in main image and inset) demonstrate a 150-nm-diameter

vesicle budding from the neutrophil surface, consistent with micropar-
ticle release. Scale bar, 1.5 µm (400 nm on high-power inset). Repro-

duced with permission from Ref. 19.
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Neutrophils Adherent to the Vascular Endothelial Surface

Adherent neutrophils may elaborate circulating microparticles
capable of remotely influencing cells relevant to lung injury
(as reviewed in Table 1). In addition, adherent neutrophils may
participate in intercellular communications that can directly alter
the vascular surface as well as the neutrophil itself.
Neutrophil–endothelial interactions at the pulmonary vascular

surface. Endothelial cells express connexins (50, 51) capable of
forming functional gap junctions with neighboring endothelial
cells (17, 52). Cytoplasmic dye transfer experiments and compat-
ible electron microscopy (Figure 2) have also suggested possible
endothelial GJIC with recruited neutrophils (23, 26). Surprisingly,
inflammatory insults generally attenuate GJIC (26, 53), despite an
increase in the connexin content of cells in the distal lung (18, 54).
This discordance may arise from the inflammatory internalization
of endothelial connexin 43 (50).

The impact of neutrophil–endothelial GJIC (or the inflam-
matory loss thereof) upon pulmonary inflammation is unclear.
The loss of endothelial connexin 43 was associated with an atten-
uation of leukocyte adhesion in the cremasteric microcirculation
(55). Concordantly, proinflammatory effects of pulmonary con-
nexin 43 were observed, although these findings were thought to
reflect endothelial–endothelial GJIC (54). Conversely, an in vitro
study using human umbilical vein endothelial cells reported
that gap junction blockade augmented neutrophil transmigra-
tion (26).

Microparticle transfer may complement GJIC in mediating
neutrophil–endothelial communication at the vascular surface.
GJIC between alveolar mesenchymal stem cells (MSCs) and
epithelial cells triggers the calcium-mediated release of MSC
microparticles, which transfer MSC mitochondria to the alveo-
lar surface (18). A similar pathway could conceivably occur
between adherent neutrophils and the pulmonary endothelium,
given observations that adherence is a major stimulant to neutro-
phil microparticle release (42). The adhesion-stimulated release of
neutrophil microparticles may either augment neutrophil

chemotaxis and endothelial transmigration by coating the en-
dothelial surface with L-selectin and P-selectin glycoprotein ligand–
1 (56), or conversely, attenuate inflammation via the delivery of
annexin-A1 to recruited neutrophils (38).
Neutrophil–platelet interactions at the pulmonary vascular sur-

face. Neutrophils adherent within the pulmonary circulation
may directly interact with platelets. After binding to endothelial
cells, neutrophils polarize surface activation of the integrin
CD11b/CD18 (macrophage-1 antigen, Mac-1), leading to local-
ized platelet–neutrophil adherence that contributes to inflam-
matory diseases such as TRALI (57). Given that connexins are
expressed in both activated neutrophils and platelets (as already
discussed), this polarized binding represents a potential oppor-
tunity for GJIC between adherent neutrophils and their platelet
partners. The presence and/or functional significance of such
GJIC remain unexplored.

Neutrophil Transit through the Pulmonary Interstitium

The first step in neutrophil transit into the interstitium involves the
release of the leukocyte trailing edge from the endothelial baso-
lateral surface. In cremasteric microvessels, this release is opposed
by neutrophil lymphocyte function–associated antigen 1 (LFA-1)–
endothelial intercellular adhesion molecule–1 interactions (58). The
leukocyte’s attempt to pull away from these adhesions induces the
release of CD181 microparticles within the subendothelial
space (58). The functional significance of this microparticle de-
position, observed during both neutrophil and T-cell transmigra-
tion, is unknown, but may serve to direct trailing neutrophils to
the site of inflammation.

Despite numerous opportunities for cell–cell interactions dur-
ing the pulmonary interstitial passage of neutrophils, little else is
known about neutrophil GJIC or microparticle exchange during
transmigration. Given the propensity of transmigrating neutro-
phils to approximate pulmonary fibroblasts (59), as well as the
ability of fibroblasts to participate in GJIC (60), future investiga-
tions of neutrophil–fibroblast interactions may be fruitful.

TABLE 1. EFFECTS OF NEUTROPHIL-DERIVED MICROPARTICLES ON CELL TARGETS IN ARDS

Cell Target Effect Mechanism Reference

Endothelial cells Proinflammatory Increased IL-6, MCP-1, tissue factor expression, and JNK-1 activation (36, 37)

Neutrophils Anti-inflammatory Delivery of annexin A1 to neutrophil receptor ALX (38)

Macrophages Anti-inflammatory Increased TGF-b release; decreased IL-8, IL-10, and TNF-a release;

down-regulation of TLR2 expression

(11, 39, 40)

Platelets Prothrombotic Activated platelet Akt signaling via integrin and selectin binding;

delivery of platelet-activating factor

(41, 42)

Definition of abbreviations: ARDS, acute respiratory distress syndrome; JNK-1, c-Jun N-terminal protein kinase–1; MCP-1, monocyte chemoattractant protein–1; TGF-b,

transforming growth factor–b; TLR2, Toll-like receptor–2.

Figure 2. Potential neutrophil–endothelial gap junctional

intercellular communication during inflammation. (a)

Neutrophils exchange cytoplasm with the pulmonary en-
dothelium during endotoxemia. Top: Intravital confocal

lung microscopy of an LPS-treated (20 µg/g body weight,

administered via tail-vein injection), endothelial-fluorescent
Tie2–green fluorescent protein (GFP) mouse demon-

strates alveoli (A) separated by subpleural microvessels.

Bottom: Cytoplasmic exchange (yellow) occurs between

calcein red–labeled polymorphonuclear leukocytes
(PMNs) (red, PMNs preincubated with 10 µM calcein

red 3 30 minutes) and endothelial cells (green), 30 minutes

after application of LPS. Scale bar ¼ 10 µm. (b) Neutrophil–endothelial cytoplasmic exchange may occur via gap junctions, as suggested by

a transmission electron micrograph of neutrophil (located at top of image) adhesion to an endothelial surface within a hamster cheek pouch
subjected to ischemia–reperfusion injury. Scale bar, 1 µm. (c) Enlarged view of selected (box in b) area demonstrates close membrane apposition

(brackets above cell-cell border in c) consistent with gap junction formation. Scale bar, 100 nm. b and c are reproduced with permission from Ref. 23.
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Neutrophils within the Alveolar Space

After transmigration, neutrophils enter into the alveolar space,
where they confront invading pathogens and/or cause tissue
injury. Despite these important activities, little is known about
neutrophil communications occurring within the alveolar space.
Neutrophil–alveolar microparticle exchange. Microparticles

detectable within the alveolar space (44, 61) are of varied origin.
Epithelial cells have been implicated as a primary source of
alveolar microparticles in ARDS (61). Platelet-derived micro-
particles have been found in porcine bronchoalveolar lavage
(BAL) fluid and human tracheal lining fluid (62). Patients with
bacterial pneumonia demonstrate increased BAL concentrations
of microparticles expressing the neutrophil marker complement
receptor–1. These microparticles inhibited the phagocytosis of
partly opsonized bacteria in vitro (19). The in vivo significance
of alveolar neutrophil microparticles remains unknown.
Gap junctions. Although epithelial–epithelial gap junctions

are of physiologic importance in cystic fibrosis (63), no evidence
of neutrophil GJIC with airway epithelia has been observed
(64). Alveolar epithelial cells, however, have the potential to
form gap junctions with bone marrow–derived cells (MSCs)
(18). Whether these processes are relevant to neutrophils remains
unknown.

CONCLUSIONS

Although the emerging processes of microparticle exchange and
GJIC appear to be of pathophysiologic significance in the
inflamed lung, the coordination of these varied intercellular
interactions and their overall impact upon lung injury progres-
sion are uncertain. However, the pace of scientific discovery
regarding microparticle exchange and GJIC is rapid, with mul-
tiple recent high-impact publications demonstrating the
current enthusiasm for these modes of intercellular communi-
cation. Despite these gains, it is particularly striking how little
is known about microparticles and/or GJIC after neutrophils
exit the vasculature. This gap in knowledge appears to offer
fertile ground for future investigations. Improvements in
our understanding of neutrophil communication may bring
us closer to achieving pathophysiology-targeted therapeutics
in ARDS.

Author disclosures are available with the text of this article at www.atsjournals.org.
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