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Abstract

The pathological hallmark of cystic fibrosis(CF) chronic inflammatory response is the massive neutrophil influx into the
airways. This dysregulated neutrophil emigration may be caused by the abnormal secretion of chemoattractants by respiratory
epithelial cells and polarised lymphocyte T-helper response. Neutrophils from CF patients have a different response to inflammatory
mediators than neutrophils from normal subjects, indicating that they are primed in vivo before entering the CF airways. CF
neutrophils secrete more myeloperoxidase and elastase, mobilise less opsonin receptors and release lessL-selectin than non-CF
neutrophils. Moreover, they show altered cytokine production and a dysregulated chemotaxis response. Laboratory studies now
suggest that CFTR is involved in regulating some neutrophil functions and indicate that altered properties of CF neutrophils may
depend on genetic factors. Current gene therapy approaches are targeted to the respiratory epithelium, but many hurdles oppose
an efficient and efficacious CFTR gene transfer. The possibility of CFTR gene therapy-based approach targeting CF neutrophils
at the hematopoietic stem cell level is discussed.
� 2003 European Cystic Fibrosis Society. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the clinical hallmark of cystic fibrosis(CF)
is chronic inflammatory lung disease dominated by
polymorphonuclear neutrophil influx in the airways.
However, these neutrophils are not able to clear bacterial
infections, especially in the case ofPseudomonas aeru-
ginosa colonisation. Repeated bacterial infections lead
to a vicious cycle of endobronchial and endobronchiolar
infection and inflammation, leading to further airway
and lung damage. Early events in the development of
CF lung disease could be a decreased mucociliary
clearance due to mucus dehydration, a breach in innate
immunity at the airway surface and an altered regulation
of inflammatory responses by respiratory epithelial cells
w1x.
In this review, we will focus on the crosstalk between

airway epithelial cells and neutrophils, and its involve-
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ment in the pathophysiology of CF lung disease. More-
over, we will discuss therapeutic implications.

2. CF lung disease is a prolonged, frustated acute
inflammatory response to infections

The neutrophil-dominated inflammatory response of
CF lung disease is unusual for a chronic-type inflam-
mation and is typically characterised by the mononuclear
infiltrates and granulomatous tissue. The neutrophil is a
predominant cell type infiltrating the CF lung, suggest-
ing that CF represents a prolonged primary inflammatory
response like that seen in acute infection. This is
consistent with the hypothesis that inflammation in CF
airways is primarily driven by products of the local
environment (macrophages and bronchial epithelial
cells) rather than by T-cell-derived-lymphokines gener-
ated as part of the systemic immune responsew2x.
Alternatively, one could assume that CF is driven by a
T lymphocytic response. T helper(Th) cell responses
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can be either Th1(distinguished by IFN-g production,
low antibody response and macrophage activation) or
Th2 (characterised by IL-4, IL-5 or IL-10 production
and high antibody response) predominantw3,4x. The
outcome of chronic infections has been assigned to the
type of Th-cell response. Thus, high antibody levelsw5x
and an abundant number of neutrophils in the lumen of
the infected bronchiybronchioli might indicate that CF
lung disease is a Th2-dominated response. Indeed, it has
been shown that CF patients are characterised by an
unbalanced Th1yTh2 lymphocytic responsew6x. The
reason for this predominant Th2 response is unclear.
Many factors may influence the differentiation of
CD4 Th cells: the cytokine profile and balance ofq

cytokines evoked by the antigen; antigen dose; antigen-
presenting cells and the cytokines they produce; host
genetic background and the activity of co-stimulatory
molecules; and hormones present in the local environ-
mentw7x. There is growing evidence that chronic inflam-
matory diseases in the gut mucosa, such as inflammatory
bowel disease, and in the lung, such as allergic asthma,
are due to dysregulation of the mucosal immune system
and pathological T-cell responses in a genetically sus-
ceptible host(see w4x and references therein). Investi-
gation of the correlation between CF genetics and Th
cell differentiation will be useful for understanding the
immunopathology of CF lung disease.
Whatever the mechanism that leads to neutrophil-

dominated lung inflammation, neutrophils are not able
to clear bacterial infections. This is due to the switching
of P. aeruginosa from a non-mucoid to a mucoid strain
w8,9x. The latter strain synthesises an exopolysaccharide,
alginate, which protects the prokaryotic cells from neu-
trophil phagocytosis. In this sense, it is possible to speak
about ‘frustrated’ phagocytosis. Here we review the
cellular events underlying neutrophil recruitment and
activation in the CF lung. For an in-depth review of the
pathological consequences of neutrophil influx in the
CF lung, we refer readers to other recent sourcesw2,10x.

3. Recruitment of neutrophils and lymphocytes to the
CF lung

Among host and bacterial chemoattractants(bacterial
products, C5a and C5a , LTB), interleukin (IL)-8desArg 4

is the major neutrophil chemoattractant in the CF lung.
The synthesis of IL-8 by various pulmonary cell types
including alveolar macrophages, bronchial epithelial
cells and fibroblasts has been documented in vitro and
in vivo. Alveolar macrophages may play a central role
in the recruitment of neutrophils to the lung since they
produce IL-8 in response to either an exogenous stimu-
lus, i.e. bacterial-derived cell wall lipopolysaccharide
(LPS) or autocrine stimuli such as TNF-a and IL-1b.
Although the exact source of IL-8 in the airways of CF
patients is still unclear, some studies suggest that respi-

ratory epithelial cells play a key role in this respect.
Indeed, CF airway tissues and epithelial cells produce
significantly higher levels of IL-8 than non-CF cells.
Bronchial epithelial cells from patients with CF pro-
duced detectable levels of IL-8 and IL-6, whereas cells
obtained from healthy controls secreted little or no IL-8
and IL-6 w11x. Immunohistochemistry revealed that CF
bronchial submucosal glands in patients homozygous
for the DF508 deletion express elevated levels of IL-8
compared with non-CF bronchial glandsw12x. This up-
regulation was selective because the pro-inflammatory
cytokines IL-1b and IL-6 were not differently expressed.
Basal protein and mRNA expression of IL-8 were up-
regulated in the culturedDF508 human bronchial gland
cells w12,13x. Human tracheal gland serous cells from
CF patients showed a much higher basal secretion of
IL-6 and IL-8 than normal cellsw14x. A tracheal CF
epithelial cell line was shown to produce more IL-8, IL-
6 and GM-CSF in response toP. aeruginosa than the
control line, and these differences increased over time
w15x.
The chemokine RANTES(regulated upon activation,

normal T cells expressed and secreted) is an inducer of
chemotaxis of eosinophils, monocytes and memory T
cells and it was found at the lower levels in CF than in
the asthmatic patientsw16x. TNF-ayIL-1b stimulation
of RANTES was significantly greater in normal immor-
talised bronchial cells than in the CF counterpartw15x.
Pyocianin, a secreted product ofP. aeruginosa, reduced
the release of RANTES by respiratory cells in the same
conditions under which it increased IL-8 releasew17x.
Taken together, these findings indicate that CF airway
epithelial cells have excessive IL-8 production either
under basal conditions or in response to the bacterial
stimulation. However, the lack of RANTES induction
may determine a dysregulated chemotaxis of lympho-
cytes into the CF lung.
Fig. 1 summarises the complex interplay which may

occur among macrophages, airway epithelial cells, neu-
trophils and lymphocytes in the context of the CF lung.

4. CF neutrophils show peculiar functional features
(Table 1)

4.1. Metabolism, surface receptors and proteases

Not only there is an increased neutrophil burden in
the lung of CF patients, but CF neutrophils differ from
normal neutrophils. Neutrophils isolated from various
CF patients show an increase in oxidative burst(induced
by PMA or zymosan) in 30% of casesw18x. However,
P. aeruginosa colonisation and IL-6 serum levels corre-
late significantly with an oxidative burst enhancement
of resting neutrophils. The production of leukotrienes
(LTB and its metabolites) is significantly increased in4

CF neutrophils as compared to neutrophils isolated from
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Table 1
Dysregulated functions of neutrophils observed in CFw19–
21,23,29,34,37x

1 Increased production of LTB4
2 Oxidative burst

(a) Increased MPO activity
(b) Increased MPO-derived oxidants

3 Surface receptor function and expression
(a) Decreased mobilisation of opsonin receptors
(b) Decreased FcgRIII levels
(c) Decreased shedding of L-selectin
(d) Decreased IL-8 receptors

4 Increased production of elastase
5 Increased IL-8 and decreased IL-1ra production
6 Altered chemotaxis

Fig. 1. Involvement of innate and adaptive immunity in chronic CF lung disease. Bacterial LPS can activate both macrophages(Mø) and airway
epithelial cells, which in turn produce IL-8, TNF-a and IL-1b. These primary pro-inflammatory mediators are responsible for neutrophil activation
and recruitment into the airways. Finally, cytokines secreted by activated Mø favour the development of either a Th1 or a Th2 response. The
exaggerated activation of airway epithelial cells, neutrophils and Th2 response in CF is denoted by boxes. It is hypothesised that IFN-g secretion
by Th1 cells and activation of bactericidal activity of Mø cells is somehow impaired in CF(---). IC: immune complexes.

age-matched controlsw19x. Circulating neutrophils iso-
lated from uninfected CF homozygotes show an
increased ability to generate myeloperoxidase(MPO)-
derived oxidants as compared with neutrophils isolated
from control subjects, both under basal conditions and
upon stimulationw20x. Moreover, MPO and the long-
lived oxidants chloramines are released at higher levels
by CF than from control neutrophils. Since this func-
tional disturbance is greatest after stimulation with
complement and immunoglobulin-opsonised zymosan(a
particle that can be phagocytosed), a link to opsonin
receptor–mediated activation was suggested. Thus,
opsonin receptor CR1(CD35) and CR3(CD11b) func-
tion and phenotypic expression were studied in whole
blood leukocytes of different patient categories. Study
of circulating and platelet-activating factor(PAF)-
primed phagocyte luminol luminescence responses
showed that neutrophils from CF children presented
decreased mobilization of opsonin receptors in response
to PAF exposure as compared to controlsw21x. In this
case, phenotypic expression correlated with functional
capacity. Taken together, these data indicate a loss in
opsonin receptor reserve in CF, consistent with in vivo
immune activation(i.e. inflammation) (Table 1).
Neutrophils obtained from CF patients were shown to

have an increased propensity to release their granule

proteins, including eosinophil cationic protein and MPO,
as compared to neutrophils from asthmatic patients and
control subjectsw22x. Again this suggests that CF neu-
trophils have been primed in vivo, possibly by cytokines.
Neutrohils from normal subjects and individuals with

CF contained similar amounts of elastase(NE). How-
ever, after pre-incubation with CF bronchoalveolar lav-
age (BAL) fluid, significantly more NE was released
by CF neutrophilsw23x. Elastase release was reduced
after neutralisation or immunoprecipitation of IL-8 and
TNF-a in CF BAL fluid. Serum IL-8 and TNF-a levels
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are elevated in CF patientsw24x, and this might be due
to their leakage from the lung environment into the
systemic blood circulation. Indeed, it was found that
direct incubation of neutrophils with both cytokines
released more NE in CF than in non-CF neutrophils
w23x.
In neutrophils, many functional responses, including

triggering of secretion in azurophil granules(containing
NE and MPO), oxidant production and microbe killing,
are pH dependent. Coakley and associates found that
intracellular pH after phorbol ester activation is more
acidic in CF than in normal neutrophilsw25x, indicating
that pH regulation in CF neutrophils is intrinsically
abnormal, contributing to the alterations in CF neutrophil
functionality. These data are in keeping with a recent
report describing hyperacidifcation of trans-Golgi net-
work in CF lung epithelial cellsw26x, indicating that the
CF defect may be directly responsible for these pH
abnormalities.
Taken together, these findings suggest that neutrophils

are already primed for activation before they enter the
lungs of CF individuals and that their activation is likely
due to CFTR mutation.

4.2. Chemotaxis

The in vitro chemotactic response of peripheral neu-
trophils from patients with CF was shown to be normal
for C5aw27x and decreased for LTBw28x. Subsequently,4

Dai et al. w29x reported that CF neutrophils displayed a
migration similar to that of non-CF cells at optimum
IL-8 concentrations(10 M), but a reduced respon-y8

siveness to sub-optimal concentrations(1–6=10 M).y9

Moreover, they detected lower numbers of receptors on
CF neutrophils(22 000 per cell) than from control
neutrophils(75 000 per cell).
Dean et al.w30x have shown that IL-8 concentration

in sputum and BAL fluid of CF children is 3000–6600
pM, while serum concentration is 490 pM. While the
accuracy and sensitivity of gradient concentration is
reduced when receptor density is reduced, detection by
neutrophils of steep concentration gradients is independ-
ent of the number of receptors. In view of the steep IL-
8 concentration gradient across the lung of CF patients,
it is unlikely that receptor down-regulation by systemic
IL-8 will limit neutrophil recruitment in the lung.
Sener and associatesw31x reported that neutrophil

chemotaxis was significantly lower in acutely infected
patients than in the clinically stable and healthy control
groups. In a recently published report, neutrophil che-
motaxis to IL-8 was studied in clinically stable patients.
The migratory response of neutrophils from children
with CF was significantly higher than that of non-CF
children, and particularly so at 10 M IL-8w32x.y8

Interestingly, no difference in neutrophil migration to
the bacterial derived peptide formyl-methionyl-leucyl-

phenylalanine(fMLP) was seen between CF and non-
CF neutrophilsw29,32x, indicating a selective abnormal
chemotactic responses in CF.
Taken together, these results indicate that during acute

episodes of infection neutrophil chemotaxis may be
decreased due to the bacterial exoproducts, which have
been shown to inihibit neutrophil chemotaxisw33x. This
phenomenon may contribute to the persistence and
pathogenesis of chronic bacterial infections in CF.

4.3. Cytokine production

The dysregulation of the inflammatory response in
the CF airways may be due to an abnormal release of
inflammatory mediators not only by epithelial cells but
also by neutrophils. A recent report by Corvol and
associatesw34x compared the capacity of blood and lung
CF neutrophils to release IL-8 and the anti-inflammatory
cytokine IL-1ra. Blood neutrophils from CF patients
constitutively secreted higher IL-8 and lower IL-1ra
amounts than those from control subjects, suggesting
either a sustained in vivo exposure of CF cells to various
inflammatory mediators or a genetic component in
altered cytokine production by neutrophils in CF. The
spontaneous release of IL-8 and Il-1ra by airway neutro-
phils was significantly higher than that from blood
neutrophils, indicating that the local environment may
modify the functional properties of CF neutrophils.
Interestingly, the spontaneous release of IL-8 was sig-
nificantly lower in airway neutrophils from children
with dyskinetic cilia than that from CF airway neutro-
phils, providing support for a role of genetic component
in the altered neutrophil function in CF.
In summary, the ability of CF epithelial cells to

produce large amounts of pro-inflammatory cytokines in
conjunction with the hyperactive secretory response of
CF neutrophils can both initiate and propagate a severe
cycle of inflammation both at local(respiratory) and
systemic level.

5. Transmigration of CF neutrophils

Migration of neutrophils from the blood-stream to
sites of tissue inflammation involves adherence of the
neutrophil to activated endothelial cells, squeezing
through the endothelium, crossing the subepithelial
matrix and finally migration through the epithelium. The
adherence of neutrophils to the endothelium involves
shedding ofL-selectin from the surface and release of
b-integrin Mac-1 (CD11byCD18), contained in the
neutrophil-specific granules, to the surface. In the recent
years, it has become clear that neutrophil adhesion to
pulmonary endothelial cells and migration into the distal
air spaces of the lungs occur through one pathway that
requires CD11yCD18 and one that does notw35x. Neu-
trophil emigration in response toEscherichia coli, E.



133M. Conese et al. / Journal of Cystic Fibrosis 2 (2003) 129–135

coli LPS,P. aeruginosa, immunoglobulin(Ig)G immune
complexes, IL-1 and phorbol myristate acetate occurs
through adhesion pathways that require CD11yCD18.
In contrast,Streptococcus pneumoniae, Group B Strep-
tococcus, Staphylococcus aureus, hyperoxia and
hydrochloric acid elicit neutrophil emigration independ-
ent of CD11yCD18. Whether there is a similar pattern
for the bronchial circulation is not known. However, in
CF patients neutrophil extravasation at the level of
bronchi, bronchioli and alveoli has been foundw36x.
The role of neutrophils that emigrate in the alveolar
spaces is still unclear.
Upon stimulation with IL-8 or fMLP, neutrophils from

both CF and non-CF subjects showed similar up-regu-
lation of CD11b, while CF neutrophils shed significantly
less L-selectin than control subjectsw37x. This dimin-
ishedL-selectin responsiveness was not observed in non-
CF bronchiectasis patients.P. aeruginosa-induced
pneumonia shows a dual behaviour in respect to the
CD11yCD18 dependency. Neutrophils migrate to the
lung via the CD18-dependent pathway in acuteP.
aeruginosa infection whereas, after chronic exposure the
migration pathway shifts to the CD18-independent route,
and is accompanied by a decrease in the number of
neutrophil migrating to the lungw38,39x. Thus, it has
been suggested that the reducedL-selectin shedding
observed in CF patientsw37x may reflect the mainte-
nance of a heightened ‘acute-type’ response toP. aeru-
ginosa (see Section 2).
Neutrophils release massive amounts of active prote-

ases, including elastase, the major mediator of the
observed lung damage. However, to cross the subepithe-
lial matrix neutrophils need to synthesize and secrete
specific proteases. One of these is urokinase-type plas-
minogen activator(u-PA), which binds on the leukocyte
surface to its glycosylphosphatidylinositol-linked high
affinity receptor, the urokinase receptor(u-PAR, CD87).
The u-PAyu-PAR system is pivotal for leukocyte,
smooth muscle cell and cancer cell migrationw40–44x.
There are no specific studies on u-PAyu-PAR involve-
ment in neutrophil migration in the context of CF lung
disease. However, it has been recently reported that mice
deficient in u-PAR have profoundly diminished recruit-
ment in response toP. aeruginosa pneumonia and
impaired bacterial clearance compared to wild-type mice
w45x. Further studies are necessary to evaluate the exact
role of the u-PAyu-PAR system(or other protease
systems) in allowing neutrophil migration through the
sub-epithelial matrix in the lung.
Neutrophils migrate across the epithelium via a para-

cellular pathway resulting in disruption of epithelial
tight junctions. Transepithelial migration is dependent
on the neutrophilb2 integrin CD11byCD18 and appears
to involve adhesive interactions with the membrane
glycoprotein termed CD47(reviewed in Ref. w46x).
However, it has been recently observed that neutrophil

transepithelial migration was reduced by pre-incubation
of epithelial cells with a F(ab9) anti-ICAM-1, or by2

pre-incubation of neutrophils with anti-CD18, anti-
CD11a, anti-CD11b or anti-CD11cw47x.
While CF neutrophils have not been investigated in

this context, Pizurki and associatesw48x have found that
CFTR-driven adenovirus expression in CF monolayers
did not lead to a difference in neutrophil migration
across CF airway epithelial cells. Moreover, adherentP.
aeruginosa promoted no difference in neutrophil migra-
tion across monolayers rescued or not with CFTR,
indicating that the combined presence of a mutated
CFTR and ofP. aeruginosa is not enough to explain the
excessive number of neutrophils in CF airways colonised
by these bacteria.

6. Therapeutic implications

Given the high neutrophil burden and inflammatory
response in the CF lung, anti-inflammatory therapy has
been envisioned for CF lung disease. Both corticoste-
roids and non-steroidal anti-inflammatory drugs have
been used in this context with mixed resultsw49,50x.
Gene therapy could be the resolutive treatment for

CF. The respiratory epithelium has been identified as
the main target of CF gene therapy. Although transfer
of the CFTR gene into human airway epithelial cells by
viral and non-viral vectors has been achieved in animal
models and in humansw51x, many hurdles must be
overcome before CFTR gene transfer can be considered
efficient w52x. We and others have recently shown that
mucus and surfactant may be considered barriers to viral
and non-viral gene transfer vectorsw53–55x.
The finding of abnormalities in CF neutrophils leads

to the possibility of hematopoietic stem cells(HSCs) as
a new target for CF gene therapy. This should be more
feasible than the airway epithelial cell approach, as
HSCs can be easily purified from blood or marrow, ex-
vivo transduced and reinfused in the same patient.
Although the expression of CFTR in cell types of non-
epithelial origin and in blood cells such as lymphocytes
has been described, the presence of CFTR mRNA in
mature neutrophils has been reported only oncew56x.
There is no evidence of the presence of the CFTR
protein in neutrophils. B and T lymphocytes express a
functional CFTR and in CF patients, CFTR-regulated
chloride channel function is impaired as seen in epithe-
lial cells w57–59x. Therefore, in neutrophils a functional
CFTR protein might be expressed. Numerous experi-
mental evidence suggests a genetic component in altered
neutrophil function in CFw20,23,25,34,37x. For example,
MPO-dependent oxygenation activity is significantly
higher not only in CF homozygotes but also in hetero-
zygotes parents of CF patientsw20x. Moreover, some
studies suggest that MPO-dependent oxidant generation,
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intracellular pH regulation and glutathione concentration
might be attributable to CFTR mutation in CFw60x.
HSC-based cell therapy is currently limited by a

number of hurdles. In chronic granulomatous disease,
phase I clinical trials based on retroviral-mediated gene
transfer of HSC are ongoingw61x. The frequency of
corrected neutrophils ranged from 0.06–0.2%, whereas
it has been established that complete correction of at
least 10% of circulating neutrophils is necessary to
observe a clinically relevant outcome. Morever, it is
likely that more efficient gene transfer vectors into
human long-term repopulating HSCs are needed. Much
work is now focused on the human immunodeficiency
lentivirus, which has the advantage of transducing rela-
tively quiescent HSCs as compared to conventional
oncoretrovirus vectorsw62x.
In conclusion, current gene therapy approaches to CF

should be limited to the respiratory epithelium until
CFTR expression in neutrophils is demonstrated and
strong evidence for CFTR-derived dysfunctions in CF
neutrophils is presented.
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