Hemophilia care in Hungary

Dr. Klara Vezendi
Szeged University
Transfusiology Department

Development of factor supply for hemophilia is a successful story in Hungary. 2010:

FVIII use per capita: 7,2 IU

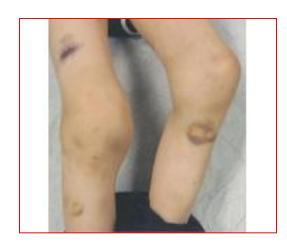
(18-fold increase)

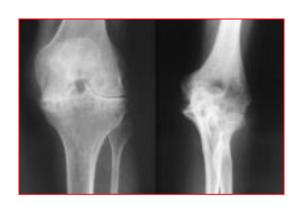
Before 1990:

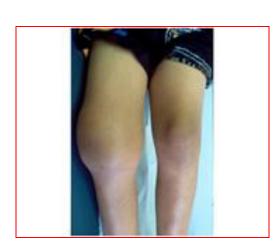
FVIII use per capita: 0,4 IU

It was a long way with many difficulties.

The cooperation of doctors, patients and national healthcare agencies was necessary to the success.




Characteristics of hemophilia care in Hungary before 1990


- No systemic organisation of hemophilia care
 - Patients were treated in local blood transfusion centres or internal medical clinics
- No commercial factor concentrates
 - Predominant source of FVIII/IX was domestic (whole blood, cryoprecipitate, FFP, PCC) – non-virus inactivated products
- No guidelines
- No registry
- No home care
- No prophylaxis
- No ITI
- No patients' organization

Consequencies:

- No the same level of treatment in different hemophilia treatment centers
- High rate of viral infections among patients with hemophilia (HCV: 90%), but low rate of HIV infection (32 patients, 19 still alive)
- Patients were "undertreated"
 (severe pain, joint deformities, arthropathy, disabilities, death in childhood or early adult life, no possibilities of surgery, ITI)

Changes of hemophilia care in Hungary after 1990

- Political, economical changes
- Organized hemophilia care: regional network of hemophilia treatment centers in 1992.
- Safe factor concentrate supply
- Establishment of a nationwide register
- Hungarian Haemophilia Society was founded in 1990.
- Education of medical staff dealing with people with hemophilia
- Introduction of home treatment (Jan. 1999)
- Guidelines (same treatment to all patients throughout the country)
- Possibilities:

orthopedic management, major operations, ITI, prophylaxis, treatment of infectious complications (HCV, HIV), HCV-compensation, molecular genetic program

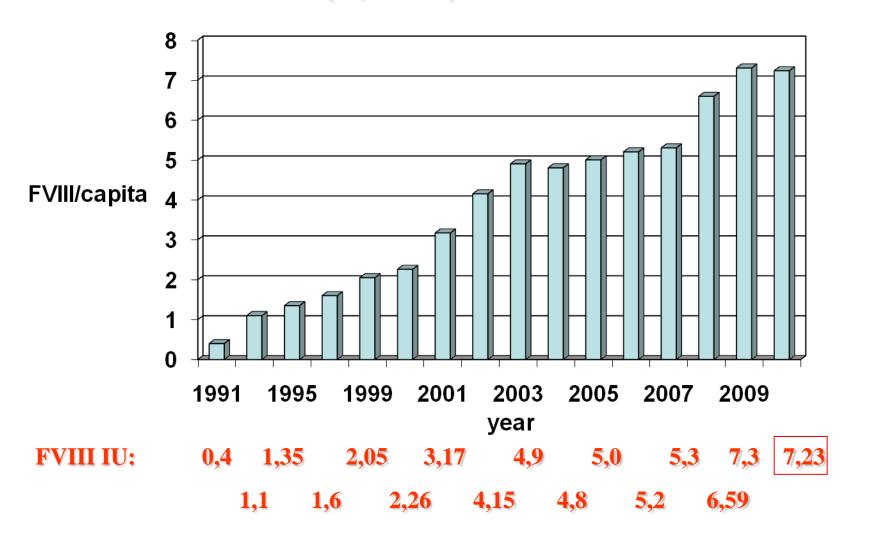
Regional network of hemophilia treatment centres

1992 – 2008:

- National Hemophilia Centre (Budapest)
- Regional Hemophilia Centres:
 - Budapest: adult children
 - Szombathely
 - Pécs
 - Miskolc
 - Debrecen
 - Szeged

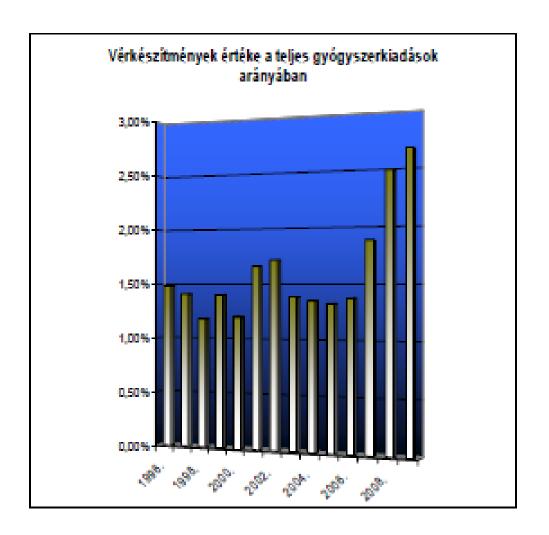
From Jan. 2009:

• 19 treatment centres (instead of previous 43)


Factor supply

- Since 1992 safe plasma-derived factor concentrates have been applied for the treatment of patients with hemophilia. The cryoprecipitates were withdrawn in 1993.
- The Hungarian Haemophilia Society had an important role in the introduction of safe factor concentrates.
- The Hungarian Health Ministry is responsible for factor supply.
- Factor concentrates are bought in annual centralized open tenders (participants: hemophilia experts, representatives of factor companies, National Health Insurance Fund Administration /OEP/, Hungarian Haemophilia Society).
- Patients have to pay neither for the factor concentrates nor the treatment.
- Factor FVIII supply has been increased from to close zero level in 1990 to 7, 2 IU per capita in 2010.

FVIII supply per capita in Hungary


(Recombinant: 2002: 0%, 2003: 2%, 2007: 23 %, 2008: 24 %, 2009: 26,6 %,

2010: 30 % (21,7 M IU)

Proportion of factor concentrates in the total pharma (drug) budget

In 2009: ~ 2,6% 2010: 3,3 % (10/300 milliard Ft)

- 20% of FVIII concentrates are produced from plasma given by the Hungarian unpaid donors (80-90000 l plasma/year).
- Hungary has an own factor-manufacturing capacity: the Humafactor-8 is made under licence of Beriate P.

 The ratio of supply of recombinant products is increasing year by year.

Home treatment

 Before 1999 there were only sporadic experiments with home care

(the law didn't allow the administration of iv. injections, only by medical staff).

• After Jan. 1999: home care became a possibility for every severe patients with hemophilia.

• It was legalized by the regulation of the Ministry of Health in Dec. 1998.

Home treatment led to a better quality of life.

Many children had been learned the technic of selfinjection in summer camps for hemophiliacs organizing by Hungarian Haemophilia Society.

Prophylaxis

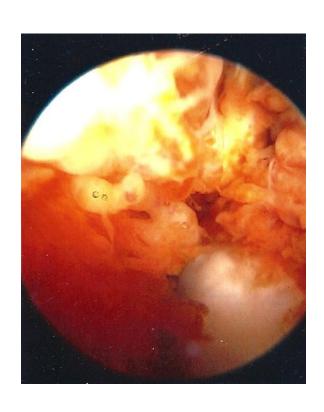
- Currently, the general treatment of hemophilia in Hungary is on-demand.
- Prophylactic treatment, mainly for hemophilic children, was introduced in 2001.
- One of the main goals of the Hungarian Haemophilia Society is to provide prophylactic treatment for all severe hemophiliacs.
- Prophylaxis today (data of National Registry, 2008):
 - All age group: 29,4 %
 - − < 15 years: 51 %
 - **− < 10 years: 68 %**
 - < 5 years: 80 %

New protocol of prophylaxis to PUP children

(according to the results of the CANAL study and Auerswald G, Kurnik K, 2009)

- Avoid first FVIII treatments into a bleed
- Start FVIII replacement therapy as early as possible in absence of danger factors (bleedings, surgery, inflammation)
- Start with low dose FVIII prophylaxis (25 IU/kg) once weekly as soon as venous access allows without Port-A-Cat
- Treat bleeds early and with higher than prophylaxis doses to avoid the need for peak treatment.
- Do not vaccinate at a FVIII treatment day
- Vaccinate s.c. (instead of i.m.)

Inhibitor, ITI


- Hemophilic patients with inhibitor in Hungary (data of National Registry, 2008):
 - Severe hemophilia A: 31
 - Mild hemophilia A: 5
 - Hemophilia B: 1
- Method of ITI (L. Nemes, National Hemophilia Centre, Budapest):
 - 1x 150 IU/kg/day FVIII/vWF
 - Treatment of acute bleeding:
 - < 5 BU inhibitor titer: high dose FVIII/FIX
 - > 5 BU: FEIBA, rFVIIa

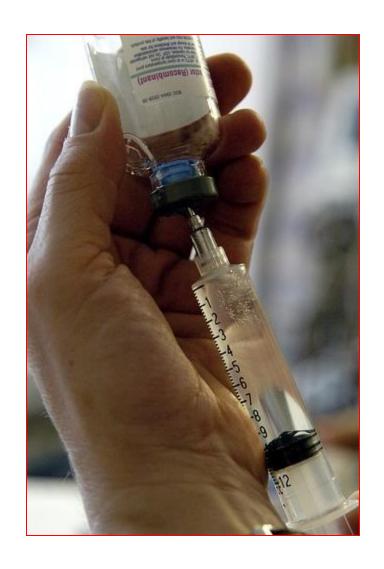
Orthopedic surgery in hemophilia

- Synovectomy (open, closed = arthroscopic)
- Elective joint replacement, arthroplasty currently are possible in Hungary.

Closed (arthroscopic) synovectomy using endoscopic shaver

Open synovectomy
(M. Kardos, Children
Hemophilia Treatment
Center, Mohács)

Total hip, knee replacements

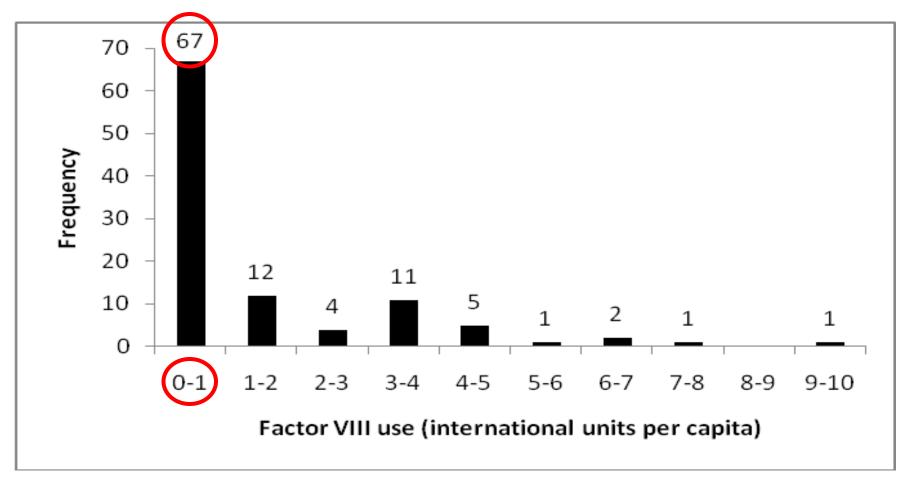

Major orthopaedic procedures performed at the NHC in the past 5 years

 Closed arthroscopic synovectomy of the knee: 23 Closed arthroscopic synovectomy of the ankle: Other open synovectomies (shoulder,elbow) 5 5 Total hip replacement: Total knee replacement: TKR revision operation: Other corrective orthopedic operations: 8

Global factor supply -

Where is Hungary?

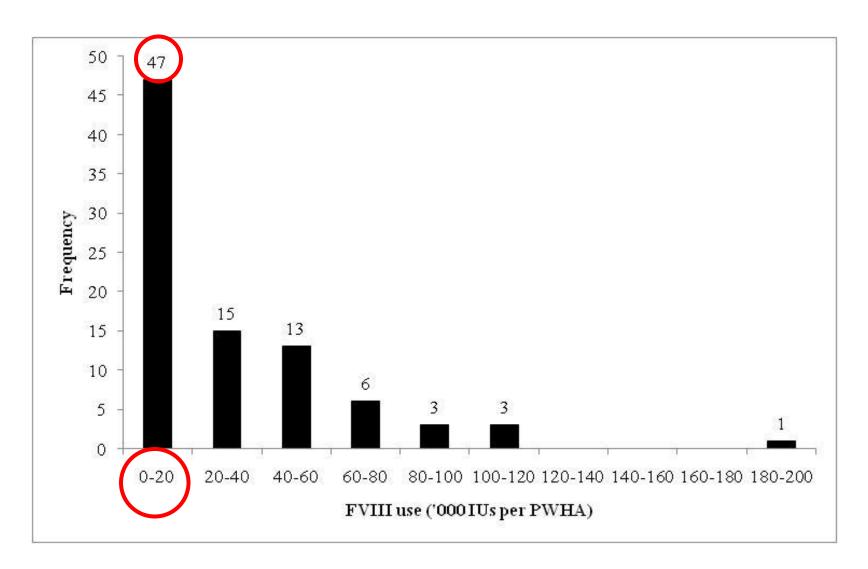
 There is a big difference in hemophilia care between the developed world and developing world.


Today ~ 70% of the estimated patients with hemophilia in the world are still not diagnosed and ~ 75% receive inadequate or no treatment (primarily in the developing world).

• The use of FVIII concentrate increases as economic capacity increases.

• 1IU per capita is approximately the 20000 IUs per patient with hemophilia per year (PWHA). It is the minimum clinical target for hemophilia care (WFH).

64 % of countries reported FVIII IU per capita of 1,0 or less. (Data of 104 countries from MRB and WFH, 1996-2006.)


Stonebraker JS et al: Haemophilia, 16, 33-46, 2010.

MRB: Marketing Research Bureau, WFH: World Federation of Hemophilia

More than half of the countries (47 out of 88) are consuming less than 20000 IUs per PWHA.

(Stonebraker JS et al: Haemophilia, 16, 33-46, 2010).

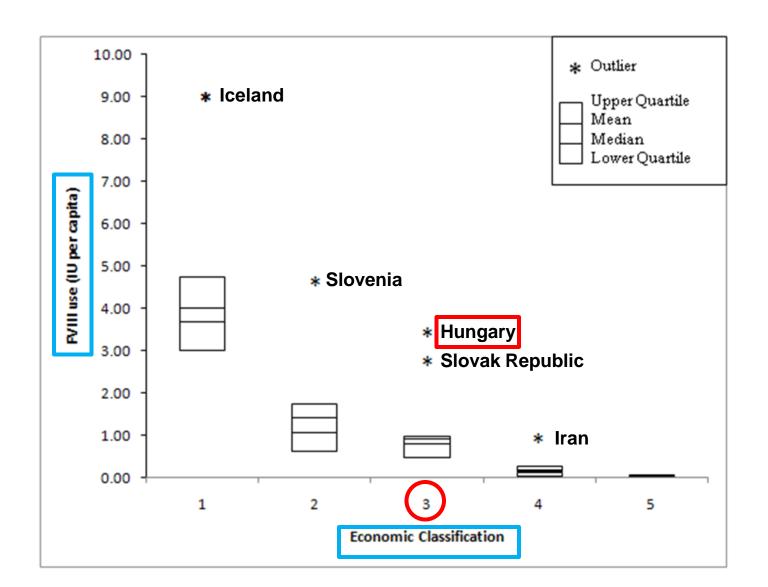
Countries with similar economies use very different amounts of FVIII per capita.

Causes:

- No consensus on therapy
 (treatment strategies /prophylaxis, surgery, ITI/ vary from country to country)
- Reported prevalence of Hemophilia A varies (different diagnostic possibilities)
 - The prevalence/100000 males for high income countries: 12,8 \pm 6,0, for the rest of the world: 6,6 \pm 4,8
 - Iceland (small, isolated population): high prevalence $(38,6 \pm 0.8)$
 - Ukraine: 0.7 ± 0.4 , Nigeria: 0.05
 - Hungary: $17,5 \pm 2,3$
 - Romania: 11.8 ± 0.5

World Bank's economic classification (according to the 2006 gross national income /GNI/per capita in US dollars)

Economic classification:	GNI (\$) per capita:
1. High income (a member of OECD):	11116
2. High income non-OECD:	11116
3. Upper middle income:	3596 - 11115
4. Lower middle income:	906 – 3595
5. Low income:	905


OECD: Organisation for Economic Cooperation and Development

FVIII use per capita by economic classification

(104 countries, 1996-2006)

Economic classification:	Mean FVIII (IU) use per capita:
1. High income (a member of OECD)	3,83 (1,28 Korea – 9,02 Iceland)
2. High income non-OECD:	1,40 (0,23 Trinidad & Tobago – 4, 65 Slovenia)
3. Upper middle income:	0,97 (0,21 Romania – 3,39 Hungary, in 2010: 7,2)
4. Lower middle income:	0,21 (0,006 Armenia – 0,96 Iran)
5. Low income:	0,03 (0,0004 Nigeria – 0,128 Eritrea)

Some countries had unusually high FVIII use (IUs per capita) when compared to the countries within their economic classification. (Stonebraker JS et al: Haemophilia, 16, 33-46, 2010).

FVIII use per PWHA by economic classification

(88 countries, 1998-2006)

Economic classification:	Mean FVIII (IU) use per PWHA:
1. High income (a member of OECD):	64111 (24713 Czech Republic – 114333 Germany)
2. High income non- OECD:	47105 (14940 Singapore – 191736 Saudi Arabia)
3. Upper middle income:	22943 (3913 Romania – 43907 Turkey) Hungary: 43392
4. Lower middle income:	9659 (133 Armenia – 35088 Guatemala)
5. Low income:	3986 (48 Uzbekistan – 24721 Eritrea)

The FVIII consumption per capita does not necessarily reflect the overall quality of care.

Comprehensive Hemophilia Care (CHC): to offer the complex treatment for patients with hemophilia

"Medical care for hemophilia is specialized. A person with hemophilia must receive care from healthcare workers who have expert knowledge of the bleeding disorder. The wide-ranging needs of people with hemophilia and their families are best met through Hemophilia Treatment Centres rather than by individual doctors."

(World Federation of Hemophilia: Organizing a National Programme for Comprehensive Hemophilia Care)

Comprehensive hemophilia care (CHC)

Core team:

- Medical doctor

 (adult or pediatric
 hematologist/internist,
 transfusiologist)
- Well educated nurse
- Physiotherapist
- Social worker
- Administrative assistant
- Factor concentrate utilization management

Laboratory:

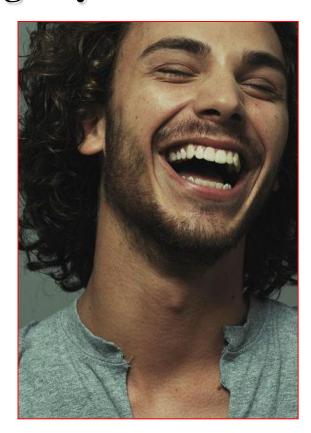
- Special hemostasis laboratory (in 24 hours)
- Other diagnostic laboratory services (liver function, víruses)

Extended team members:

- Orthopedic surgeon
- Hepatologist
- Infectious disease (HIV) specialis
- Gynecologist/obstetrician
- Dentist
- Genetic adviser
- Psychiatrist/psychologist
- Other specialists (surgeon, radiologist, transfusion medicine)

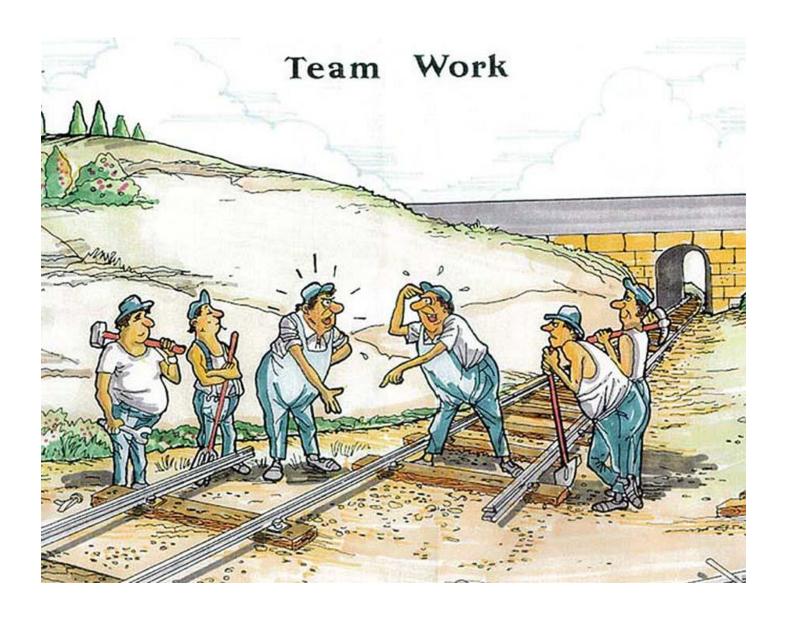
Educating the family

- After a child is diagnosed with hemophilia, the parents should be given an explanation of the nature of the disease and its genetic basis.
- To train them how is recognize bleeds and how to infuse the factor concentrate.
- To give a psychological support.
- To inform teachers at school about hemophilia.


Regular check-ups of all hemophiliacs at specialized hemophilia centre

- To discuss the problems of everyday life.
- Genetic counselling and family planning.
- Treatment the complications of hemophilia (chronic arthropathy, infections, others).

Regular dental visits – usually every 6 months – will help identify problems early.


Prevention is an essential component of oral care: it will reduce the need of treatment and the number of emergency visit.

With prevention

Without prevention

Good hemophilia care = teamwork

Future plans

Effective national healthcare policy is required in the future too:

- To save high level of factor supply in Hungary.
- To increase the ratio of recombinant products.
- More home treatment, modification of the home care regulations.
- To provide prophylactic treatment for all severe hemophiliacs.
- More Comprehensive Care Center.
- Better laboratory diagnosis (more reference labs).
- Home factor-delivery system (?)

Summary

The life expectancy of someone with hemophilia varies depending on whether they receive proper treatment:

- without adequate treatment, many people with hemophilia die before they reach adulthood
- the replacement therapy has improved the lifeexpectancy and quality of life of patients with hemophilia
- with prophylactic treatment a new generation of zero joint score adult patients is coming
- children can look forward to a normal life expectancy.

