
Kezdő Python programozás
SZTE Eötvös Loránd Szakkollégium

hunyadiz
Stamp

hunyadiz
Stamp

Csonka Valentin Viktor

• 3. éves programtervező informatikus hallgató
• Félév szakmai munkatapasztalat
• 2 félév oktatás az egyetemen
• Github: https://github.com/Valesz

https://github.com/Valesz

Miért Python?
• Modern
• Könnyen használható
• A legnépszerűbb nyelv
• Kezdő barát
• Szinte akármit meg lehet vele valósítani az nagy

ökoszisztémája miatt

• Modern
• Könnyen használható
• A legnépszerűbb nyelv
• Kezdő barát
• Szinte akármit meg lehet vele valósítani az nagy

ökoszisztémája miatt

Kurzus célja
• Bevezetni a programozás világába
• Eszközöket mutatni, amivel saját programozásbéli

problémáinkat meg tudjuk oldani
• Alapvető programozási tudás megszerzése
• Ismerkedés haladóbb eszközökkel mint a Numpy, és Pandas

A kurzus végi tudás
• Fejlesztőkörnyezet használati tudása
• Alapvető programozási elemek ismerete
• Minimális algoritmikus gondolkodás kiépítése
• Önálló programozási problémák megoldása
• Ismeretek Python csomagokkal való munkával
• Numerikus számítások Python segítségével
• Ábrák készítése Python segítségével
• Nagy mennyiségű adatok feldolgozása Python segítségével

Feladattár
• A gyakorlófeladatokat, és nehezebb feladatokat itt találtok:
• https://drive.google.com/drive/folders/1SFGnwbCOiYqFtq-

76QU_mOWX7pmRXtQZ?usp=sharing

https://drive.google.com/drive/folders/1SFGnwbCOiYqFtq-76QU_mOWX7pmRXtQZ?usp=sharing
https://drive.google.com/drive/folders/1SFGnwbCOiYqFtq-76QU_mOWX7pmRXtQZ?usp=sharing

1. Blokk: Bevezetés, első program
• Fejlesztői környezet megismerése, használata
• Első program megírása, és futtatása
• Különféle kiíratások használata
• Kommentek megismerése

Mi a Programozás?
• Receptírás, vagy útmutatás egy „vak”, de

nagyon gyors és precíz asszisztensnek.
• Utasítás sorozatok adása, hogy a „vak”

számítógép elvégezze a munkánkat.
• Problémamegoldás eszköze. Hogyan tudunk

egy komplex problémát kisebb kezelhetőbb
dolgokra lebontani.

• Automatizálás. A unalmas ismétlődő feladatok
gépiesítése.

Programok futása
• A programjaink fentről lefele olvasódnak, és

futnak le soronként
• Ezt nevezzük Szekvenciális programozásnak

• Szekvenciális: Fancy (menő) szó arra, hogy egymás
utáni

Programozáshoz használt eszközök
• IDE – Integrated Development Environment

• Magyarul: Fejlesztőkörnyezet

• Fordító
• Lefordítja a programot a gép nyelvére
• Pythonnál erre nincs szükség

• Futtató
• A nem lefordított programokat futtató környezet
• Ez felel azért hogy tudjon futni a program, ha nem

kellett fordító

IDE – Integrated Development Environment
(Fejlesztői környezet)

• Alapvetően egy Jegyzettömbben, és Word-ben is lehet
programozni

• Az IDE-k viszont egy programozásra specializált
szövegszerkesztők extra funkciókkal
• Kód színezése
• Kód ellenőrzése
• Hibák keresése
• (Kód futtatása)

Pycharm mint IDE
• A Pycharm Community egy ingyenes Pythonra specializált IDE
• Egyetemen is általában ezt használjuk
• Extra funkciói:

• Szöveg színezése
• Hibák észlelése
• Szöveg kiegészítés, és javaslatok mutatása
• Programok futtatása
• És még sok más…

Demo – Pycharm alapvető dolgok
• Projekt létrehozása
• Projekt megnyitása
• .py fájlok készítése
• .py fájlok futtatása
• Leírt IDE funkciók megmutatása

Adatok típusa
• Szám

• Lehet egész vagy tizedes is
• Tizedesnél kerekítési hibákra figyelni kell

• Szöveg
• Idézőjelek közti („ vagy ‚ vagy `) karakterek sorozata

• Logikai
• A megadott logikai kifejezés elvégése
• Értéke lehet True vagy False (Igaz vagy Hamis)
• Tagadásra a „not” Karaktert használjuk
• Műveletek: ==, !=, <, >, <=, >=

Print függvény
• Ezzel tudunk kiírni a konzolra szöveget.
• Kódban:

• print(„szöveg”) vagy print(számítás)

Demo – Első program
• Írjunk egy programot, ami bemutatkozik: kiírja a nevünket, az

aktuális évet, és egy egyszerű számítás eredményét.

Gyakorló feladatok – Szekvenciális programozás
• Egyszerűbb feladatok:

• https://docs.google.com/document/d/1sGjW0EnvjGrSu4mAiPiAyJOq1d
7CQwNJvVG4xiPdG8o/edit?usp=sharing

• Nehezebb feladatok:
• https://docs.google.com/document/d/1EAwhSsHNm8NkTSmtZM7xted

QrqNwTh2wC1O2SkjFXPY/edit?usp=sharing

https://docs.google.com/document/d/1sGjW0EnvjGrSu4mAiPiAyJOq1d7CQwNJvVG4xiPdG8o/edit?usp=sharing
https://docs.google.com/document/d/1sGjW0EnvjGrSu4mAiPiAyJOq1d7CQwNJvVG4xiPdG8o/edit?usp=sharing
https://docs.google.com/document/d/1EAwhSsHNm8NkTSmtZM7xtedQrqNwTh2wC1O2SkjFXPY/edit?usp=sharing
https://docs.google.com/document/d/1EAwhSsHNm8NkTSmtZM7xtedQrqNwTh2wC1O2SkjFXPY/edit?usp=sharing

2. Blokk: Változók és Alapműveletek
• Változók szerepének megértése
• Változók létrehozása, értékadása, módosítása
• Változóelnevezési szokások ismertetése
• Alapvető aritmetikai operátorok használata

• Aritmetikai: Fancy (menő) szó a matematikai-ra
• Operátorok: Műveletjelek (pl.: +, -, *, /)

• Felhasználói adat bekérése
• Típuskonverzió
• String (szöveg) formázás alapjai f-string használatával

Mi a változó?
• Nevesített tárolóhely adatok számára.

• Pl.: költözéskor a tányéros doboz, amiben 1 lapos tányér van

• Szintaxisa (leírási módja):
• valtozo_nev = ertek

• Az eszközünk (laptop, vagy asztali gép) memóriájában tárolódik
• Pythonban nincs a változóknak fix típusaik

• De mindenhol máshol általában van

Változók típusai
• Integer – int

• Egész számok (pl.: 5, 10, 1, 0, -5)

• Float – float
• Tizedes vagy lebegő pontos számok (pl.: 0.1, 0.2, 3.1415, -2.56)

• String – str
• Szöveg (karakterlánc)
• Idézőjeleket használunk jelölésükre (pl.: „szöveg”, ‚locsolás’, ‚Ursula’)

• Bool – bool
• Logikai érték (True vagy False), elágazásoknál lesz fontos

• type(változó) függvény
• Megmondja a változó típusát

Változók elnevezése
• Beszédes nevek

• Nem ‚a’, meg ‚b’, mert azt 1 hét múlva nem tudod mit jelent

• Elnevezési konvenciónak a „snake_case”-t használjuk
• Minden kisbetű, és a szavakat aláhúzással választjuk el („_”)

• Nem kezdődhet számmal, vagy már lefoglalt kifejezéssel
• Lefoglalt kifejezésekre példa: if, else, elif, print, return, def

Aritmetikai operátorok
(matematikai műveletek)

• Összeadás („+” karakterrel, pl.: 1 + 2, vagy a + b)
• Kivonás („-” karakterrel, pl.: 1 – 2, vagy a - b)
• Szorzás („*” karakterrel, pl.: 1 * 2, vagy a * b)
• Hagyományos osztás („/” karakterrel, pl.: 1 / 2, vagy a / b)
• Egész osztás („//” karakterekkel, pl.: 3 // 2, vagy a // b)

• A tizedes részt levágja, nem kerekít

• Maradékos osztás („%” karakterrel, pl.: 1 % 2, vagy a % b)
• Visszaadja a maradékot

• Műveleti sorrend változtatása (és) karakterekkel

Felhasználói bemenet
• input(„kérdés”) bekér adatot a felhasználótól
• Fontos, hogy mindig String (szöveg, str) típust kapunk még ha

szám is amit megadott a felhasználó
• El lehet tárolni változóban

• Pl.: valtozo_nev = input(„kérdés”)

Típus konverzió (típus váltás)
• Lehet a típusok között váltani, csak figyeljünk rá, hogy mit mire

váltunk
• Például egy szöveget nem tudunk számmá alakítani, csak ha maga a

szöveg is egy szám

• tipus(átváltandó dolog)
• Pl.: int(„3”)
• Itt a 3 mint szöveg szerepel, és ezt váltjuk át egy egész számmá

• Ha nem jól végezzük az átváltást a programunk hibát dob

Demo - Változók
• Kérjük be a felhasználótól a nevét és születési évét. Számoljuk ki

az életkorát és üdvözöljük név szeirnt, kiírva az életkorát is.

Gyakorló feladatok - Változók
• Egyszerűbb feladatok:

• https://docs.google.com/document/d/1wTNCUEbgP1gWUFrX_UMinb2
0SKa6NJBvOPst-_po6uE/edit?usp=sharing

• Nehezebb feladatok:
• https://docs.google.com/document/d/1FTv6MP43SrHnHnuslgBsGCzsy

6q5rDgZCdbE9pq8R6w/edit?usp=sharing

https://docs.google.com/document/d/1wTNCUEbgP1gWUFrX_UMinb20SKa6NJBvOPst-_po6uE/edit?usp=sharing
https://docs.google.com/document/d/1wTNCUEbgP1gWUFrX_UMinb20SKa6NJBvOPst-_po6uE/edit?usp=sharing
https://docs.google.com/document/d/1FTv6MP43SrHnHnuslgBsGCzsy6q5rDgZCdbE9pq8R6w/edit?usp=sharing
https://docs.google.com/document/d/1FTv6MP43SrHnHnuslgBsGCzsy6q5rDgZCdbE9pq8R6w/edit?usp=sharing

3. Blokk: Listák
• Listák szerepének megértése
• Listák létrehozása
• Elemek elérése elölről, és hátulról is
• Listák szeletelése
• Listaelemek módosítása
• Alapvető lista függvények ismerete

• append, insert, remove, pop, len, sort, reverse

Mi a lista?
• Elemek gyűjteménye
• Módosítható elemek
• [és] karakterek jelölik (szögletes zárójel)
• Akármelyik elemet el tudjuk érni a listából

• Pl.: lista_neve[elem indexe]

• Elemeit vesszővel elválasztva fel tudjuk sorolni
• Különböző típusú elemeket is tárolhat, de általában azonos

típusú elemeket szokott tárolni
• Dobozba belerakjuk a tányérjainkat például

Listák indexelése (lista elemeinek sorszáma)
• Fontos, hogy a listák 0-tól kezdődnek!!!!

• Tehát az 1. elemre, a 0 index-el tudunk hivatkozni

• lista_neve[0] az első elem
• lista_neve[tetszőleges index] a tetszőleges elem elérése
• Tudunk negatív indexeket is használni, ekkor hátulról számolja

• lista_neve[-1] az utolsó elem, és lista_neve[-2] az utolsó előtti

• Figyeljünk, hogy ne hivatkozzunk nem létező elemre, mert akkor
is hibát dob a programunk

Listák szeletelése
• Listát szét tudunk vágni a következő módon:

• lista_neve[kezdő index:végső index:lépésköz]
• Pl.: list[1;-1;2] ez a lista minden második elemét veszi ki, kivéve az

utolsót
• Ezeket akármilyen sorrendben lehet alkalmazni

• Pl.: list[4:] kiveszi a negyedik elem után az összeset
• Pl.: list[:4] kiveszi az első 4 elemet
• Pl.: list[2:4] kiveszi a 2. elemtől a 4-ig
• Pl.: list[4::2] kiveszi a negyedik elemtől minden másodikat
• Pl.: list[:4:2] kiveszi a negyedik elemig minden másodikat

• Negatív lépésköz is lehet
• Pl.: list[::-1] megfordítja a listát

Listák módosíthatósága
• Listák egyes elmeit tudjuk módosítani
• lista_neve[elem indexe] = új érték

• Pl.: list[2] = „vidám” megváltoztatja a lista 2. elemét a „vidám” szövegre
• Pl.: list[-1] = 3 megváltoztatja a lista utolsó elemét a 3 számra

Alapvető lista függvények
• lista.append(elem) beszúrja a lista végére az elemet
• lista.insert(index, elem) beszúrja a lista adott indexére az elemet
• lista.remove(elem) kiveszi a listából az elemet

• Ha nincs benne az elem, akkor hibát dob

• lista.pop(index) kiveszi az adott indexről az elemet
• És vissza is adja, szóval el lehet tárolni egy változóban

• len(lista) lista elemeinek számát adja vissza (length rövidítése)
• lista.sort() rendezi a listát növekvő sorrendben
• lista.reverse() megfordítja a lista elemeinek sorrendjét

Demo - Listák
• Készítsünk egy egyszerű bevásárlólista-kezelő programot.

Lehessen hozzáadni tételt, megtekinteni a listát, és eltávolítani
tételt.

Gyakorló feladatok - Listák
• Egyszerűbb:

• https://docs.google.com/document/d/1NRCgycLlYuwxGoktZ0kk9ijRnR
bRBJpbQLBi3STHcK0/edit?usp=sharing

• Nehezebb:
• https://docs.google.com/document/d/1iyS665TWN3JSwREiZyeb3PT5s

MOo_c6fiPqHFdljgpw/edit?usp=sharing

https://docs.google.com/document/d/1NRCgycLlYuwxGoktZ0kk9ijRnRbRBJpbQLBi3STHcK0/edit?usp=sharing
https://docs.google.com/document/d/1NRCgycLlYuwxGoktZ0kk9ijRnRbRBJpbQLBi3STHcK0/edit?usp=sharing
https://docs.google.com/document/d/1iyS665TWN3JSwREiZyeb3PT5sMOo_c6fiPqHFdljgpw/edit?usp=sharing
https://docs.google.com/document/d/1iyS665TWN3JSwREiZyeb3PT5sMOo_c6fiPqHFdljgpw/edit?usp=sharing

4. Blokk: Elágazások
• Egyes részek futását feltételhez kötni
• Ismerni az if, elif, else kulcsszavakat, és szerkezetüket
• Megérteni az indentáció (behúzás) kritikus szerepét a Pythonban
• Összehasonlító operátorok használata
• Logikai operátorok használata
• Egyszerű és összetett feltételek megfogalmazása

Indentáció (behúzás)
• Jelöli és egybefogja a kódrészeket
• Pythonban kötelező szintaktikai elem

Mi az elágazás?
• Lehetővé teszi a program különböző módon való futását

feltételek teljesülésekor
• Útelágazás a programunkban

Az if utasítás
• Alapvető feltételes szerkezet
• if feltétel:

• A feltétel után : karakter kell
• Utána a következő sor behúzott sor(ok) csak akkor hajtódnak végre, ha a

feltétel igaz (True) volt

Az elif utasítás
• Az „else if” rövidítése
• Lehetővé teszi több feltétel egymás utáni láncolását
• Akkor értékelődik ki, ha az előző if (vagy elif) feltétele hamis volt
• Szintaxis:

• elif feltétel:
• Behúzással jelöljük a hozzá tartozó kód blokkot

• Több elif is lehet egymás után, de mindig egy if után lehet csak

Az else utasítás
• Akkor hajtódik végre, ha az if és az összes elif feltétele hamisra

(False) értékelődött ki
• Szintaxis:

• else:
• Majd behúzással jelöljük a hozzá tartozó sorokat

• Egy if-hez maximum 1 else tartozhat
• Az else blokk mindig a if és elif utasítások után kerül

Összehasonlító operátorok
• Egyenlőség: ==
• Nem egyenlő: !=
• Nagyobb: >
• Kisebb: <
• Nagyobb egyenlő: >=
• Kisebb egyenlő: <=
• Eredményük mindig logikai (True, vagy False)

Logikai operátorok
• feltétel1 and feltétel2

• Igaz ha mind a két oldalán szereplő feltétel igaz

• feltétel1 or feltétel 2
• Igaz ha a 2 feltétel közül valamelyik igazra értékelődik ki

• not feltétel1
• Megfordítja a feltétel1 értékét
• Tehát ha igaz (True) volt akkor hamis (False) lesz, és fordítva is így van

Demo - Elágazások
• Kérjünk be egy vizsgapontszámot (0-100). Írjuk ki a szöveges

értékelést: 0-49: "Elegtelen", 50-69: "Elégséges", 70-84:
"Közepes", 85-94: "Jó", 95-100: "Kiváló". Kezeljük az érvénytelen
(0 alatti vagy 100 feletti) bevitelt is.

Gyakorló feladatok - Elágazások
• Egyszerűbb:

• https://docs.google.com/document/d/1agdPzxPKGceP-
swI14zY_uYJXxrQsCC77cwa2L4weo0/edit?usp=sharing

• Nehezebb:
• https://docs.google.com/document/d/14oWHzLhvvfKy_Wi0VBbanu9i2

gtSGrM2bE8bbkF3NaI/edit?usp=sharing

https://docs.google.com/document/d/1agdPzxPKGceP-swI14zY_uYJXxrQsCC77cwa2L4weo0/edit?usp=sharing
https://docs.google.com/document/d/1agdPzxPKGceP-swI14zY_uYJXxrQsCC77cwa2L4weo0/edit?usp=sharing
https://docs.google.com/document/d/14oWHzLhvvfKy_Wi0VBbanu9i2gtSGrM2bE8bbkF3NaI/edit?usp=sharing
https://docs.google.com/document/d/14oWHzLhvvfKy_Wi0VBbanu9i2gtSGrM2bE8bbkF3NaI/edit?usp=sharing

5. Blokk: Ciklusok
• Megérteni miért van szükség a ciklusokra, és miért hasznosak
• Ismerni a for ciklust és használatát sorozatok (listák, szövegek,

range) bejárására
• Ismerni a while ciklust, és használatát feltételtől függő

ismétlésre
• Megérteni a break és continue utasításokat
• Tudni egyszerű ciklusokat írni adatfeldolgozásra, ismétlésre

Miért kellenek a ciklusok?
• Feladatok (kódblokkok) többszöri végrehajtása, anélkül hogy

többször leírnánk azt
• Adatsorozatok (listák, szövegek) elemeinek feldolgozására

A for ciklus
• Iteráció (végiglépkedés) egy bejárható sorozat elemein
• Szintaxis:

• for ciklus_valtozo in sorozat:
• A ciklus_valtozo minden iterációban felveszi a sorozat következő elemét

• Listákra:
• for ciklus_valtozo in lista_neve:

• Szövegre:
• for ciklus_valtozo in szoveg:

• Range használata következő dián

A for ciklus range használatával
• A range utasítás egy számsorozatot generál
• Általában for ciklushoz szoktuk használni

• for ciklus_valtozo in range(start, stop, step):

• Szintaxis:
• range(stop) 0-tól stop -1-ig (pl.: range(5) -> [0,1,2,3,4]
• range(start, stop) start-tól stop -1-ig (pl.: range(2, 6) -> [2,3,4,5]
• range(start, stop, step) start-tól, stop-ig step lépésközönként

A while ciklus
• Addig ismétli a kód blokkot ameddig a feltétel igaz (True)
• Szintaxis:

• while feltétel:
• Utána behúzással a hozzá tartozó kód blokk

• Fontos! Gondoskodjunk arról, hogy a feltétel valamikor hamissá
válik, mert különben egy „végtelen ciklusba” esünk, és lefagyhat
a programunk
• Ezt általában a feltételben szereplő változó növelésével, vagy

csökkentésével szoktunk elérni, vagy más kilépő részek segítségével

Ciklusvezérlő utasítások
• break

• Azonnal kilép a jelenlegi ciklusból

• continue
• A blokk hátralévő részét átugorja, és egyből kezd egy új iterációt

Demo - Ciklusok
• Írjunk ki minden elemet egy listából for ciklussal, és számoljuk

össze hány páros szám van

Gyakorlófeladatok - Ciklusok
• Egyszerűbb:

• https://docs.google.com/document/d/1EPEkviTRXtdUHtTCQHPXNX_IZ
FSW2t9L8NDsToEclFE/edit?usp=sharing

• Nehezebb:
• https://docs.google.com/document/d/1KEH4jo7TrryCUSL4oZYOROWR

WvWCPIyzvJccWwR6D8U/edit?usp=sharing

https://docs.google.com/document/d/1EPEkviTRXtdUHtTCQHPXNX_IZFSW2t9L8NDsToEclFE/edit?usp=sharing
https://docs.google.com/document/d/1EPEkviTRXtdUHtTCQHPXNX_IZFSW2t9L8NDsToEclFE/edit?usp=sharing
https://docs.google.com/document/d/1KEH4jo7TrryCUSL4oZYOROWRWvWCPIyzvJccWwR6D8U/edit?usp=sharing
https://docs.google.com/document/d/1KEH4jo7TrryCUSL4oZYOROWRWvWCPIyzvJccWwR6D8U/edit?usp=sharing

6. Blokk - Alapok Ismétlése
• Megerősíteni a programozás alapvető építőköveinek megértését.
• Növelni a magabiztosságot összetettebb, több elemet követelő

problémák megoldásában.
• Belelendüljünk a programozásba újra.

Szekvencia
• A programok fentről lefelé futnak

• A változónk csak onnantól lefelé lehet használni, hogy deklaráltuk
(létrehoztuk) azt

• print függvényt használjuk kiíratásra
• Több féle módon tudunk külön típusú változókat összekötni

Változók

Egyszerű Változók

• Számok
• Integer – Egész szám
• Float – Tizedes szám

• Szöveg
• String – szöveg, speciális lista ami karakterekből áll

• Logikai
• Állítások amik igazak (True) vagy hamisak (False) lehetnek
• and, or, not kulcsszavak és logikai operátorok (logiakai jelek, pl.: egyenlő)

Összetett Változók

• Lista
• Egyszerű változók „halmaza”
• Általában ugyanolyan típusú változókat rakunk bele
• Lehet belerakni, elvenni, és módosítani elemet

• Dictionary (Szótár)
• Egy Lista ahol minden elemnek van egy címkéje
• Felfogható elemek megfeleltetésének
• Például: Magyar Értelmező Kéziszótár, ahol egy szóhoz kapcsolódik a

jelentése, és több szó van egy példányban

Típus konverzió (Típus váltás)

• Nem mindegy hogy milyen típusban használunk egy változót
• Lehet hogy át kell váltanunk a típusát
• Példa: az input() függvény mindig szöveget ad vissza (még ha

számot is írtunk be neki)

• Szintaxis: tipus(változó)
• Példa: int(„23”)
• A példa egy szöveget (ami a 23 szöveg) alakítja át egy egész számmá,

amivel már tudunk műveleteket csinálni

Felhasználói bemenet

• Input függvényt használjuk ennek a kérésére
• Az input függvény mindig egy szöveget ad nekünk
• Legyünk jó programozók és csináljunk felhasználóbarát

alkalmazást, feltehetünk kérdéseket amire várjuk a választ

• Szintaxis:
• Példa: input(„Van-e kérdésed? ”)
• A példa kiírja a konzolra, hogy „Van-e kérdésed? „, majd vár a

felhasználótól egy szöveget

Listák

• Egyszerű változók „halmaza”
• Általában ugyanolyan típusú változókat rakunk bele
• Lehet belerakni, elvenni, és módosítani elemet
• Le tudjuk kérni a lista méretét (hány elem van benne)
• Itt már keletkezhetnek hibák is a programunkban

• Ha olyan elemet szeretnénk elérni ami nincs a listában (pl.: egy 2 elemű
listában a 10-et szeretnénk visszakérni)

• Vagy ha nem létező elemet szeretnénk a remove-al kitörölni

Alapvető lista függvények
• lista.append(elem) beszúrja a lista végére az elemet
• lista.insert(index, elem) beszúrja a lista adott indexére az elemet
• lista.remove(elem) kiveszi a listából az elemet

• Ha nincs benne az elem, akkor hibát dob

• lista.pop(index) kiveszi az adott indexről az elemet
• És vissza is adja, szóval el lehet tárolni egy változóban

• len(lista) lista elemeinek számát adja vissza (length rövidítése)
• lista.sort() rendezi a listát növekvő sorrendben
• lista.reverse() megfordítja a lista elemeinek sorrendjét

Elágazások
• Ha ugyanolyan mértékű behúzást használunk egymás utáni

sorokon akkor azokat egy „blokkba” tudjuk foglalni
• If/elif/else segítségével tudunk elágazásokat létrehozni
• Úgy kell elképzelni mintha egy elágazáshoz érnénk, és

valamilyen logika alapján elkezdjük balról jobbra nézni az utakat
és aminél először lesz jó a logikánk ott indulunk el

Logikai operátorok (logikai műveletek)
• Nagyon összetett logikákat tudunk létrehozni a helyes

használatukkal
• and, or, not, <, >, <=, >=, ==, !=, (,) műveleteket használhatunk
• Mindig vagy igazat (True), vagy hamisat (False) eredményeznek

Ciklusok
• For ciklus

• Listán, vagy range-en (számsoron), vagy szövegen való végig lépegetés
• While ciklus

• Addig csinálunk valamit ameddig Hamis nem lesz a logikánk
• Végtelen ciklust eredményezhet (Ez veszélyes, mert lefagyhat a futtató

felületünk)
• Break utasítás

• Kilép a legbelső ciklusból, és az utána lévő utasításokat már nem hajtja
végre

• Continue utasítás
• Átlép a következő iterációra, és az utána lévő utasításokat már nem

hajtja végre

Demo - Ismétlés
• Írjunk egy egyszerű programot, ami bekér 5 db vizsgaeredményt

(0-100) a felhasználótól, tárolja őket egy listában. Majd számolja
ki az átlagpontszámot, és írja ki az átlagot, valamint azokat az
eredményeket, amik az átlag felett vannak. Kezeljük a hibás
bevitelt (nem szám, vagy tartományon kívüli érték).

Gyakorlás - Ismétlés
• Egyszerűbb feladatok:

• https://docs.google.com/document/d/1DpFqrEV37p8d_sBkuES4n-
E2atUixxV3wTqYhozgTXQ/edit?usp=drive_link

https://docs.google.com/document/d/1DpFqrEV37p8d_sBkuES4n-E2atUixxV3wTqYhozgTXQ/edit?usp=drive_link
https://docs.google.com/document/d/1DpFqrEV37p8d_sBkuES4n-E2atUixxV3wTqYhozgTXQ/edit?usp=drive_link

7. Blokk - Függvények
• Megérteni a függvények célját
• Tudni függvényeket definiálni, és hívni
• Megérteni a paraméterek szerepét
• Tudni visszaadni értéket a függvényből
• Alapvető ismeretek a változók hatásköréről

Miért van szükségünk függvényekre?
• DRY – Don’t repeat yourself

• Kódismétlődést elkerüljük. Ha egy feladatot többször el kell végeznünk,
akkor írjunk rá függvényt

• Olvashatóbb és struktúráltabb legyen a kódunk
• Nagyobb egybefüggő kódrészek logikai egységekre bontása. A függvény

neve leírja mit csinál a blokk, ezért nem kell értelmeznünk a kódot.

• Újrafelhasználhatóság
• Máshol is fel tudjuk használni a kódunkat.

Függvények definiálása
• Szintaxis:

• def függvény_neve(paraméter1, paraméter2, …):

• A függvény neve fontos hogy beszédes legyen
• Itt is snake_case-t használunk elnevezéskor

• Kisbetűk, szavanként aláhúzással elválasztva

• Paraméterek azok változók amiken keresztül adatot tudunk
átadni a függvényünknek

A return utasítás
• Értéket ad vissza a függvény hívásának helyére
• Hatására megszakad a függvény futása, és a további részek már

nem kerülnek lefutásra, viszont a futást a függvény hívásának
helyéről folytatja

• Ha nincs return utasítás akkor a függvény egy None értéket ad
vissza

• Egy függvényben lehet több return utasítás is
• Pl.: egy if/else ágban

A változók hatásköre
• Lehet lokális és globális

A változók hatásköre - Lokális
• A függvényen belül létrehozott változók
• Csak a függvényen belül érhetőek el
• A függvény befejezésekor megszűnnek

A változók hatásköre - Globális
• A függvényen kívül definiált változók
• Bárhonnan el lehet érni őket olvasásra
• Jobb paraméterként átadni, és return-el visszaadni valamilyen

értéket

Demo - Függvények
• Írjunk egy funkciót, ami kiszámolja egy téglalap területét és

kerületét, és egy másikat, ami üdvözöl egy felhasználót.

Gyakorlófeladatok - Függvények
• Egyszerűbb:

• https://docs.google.com/document/d/1GlhNswi-
99NgKt4ujqMG0aGbCjFWqUBQ1aWcSk8CXqc/edit?usp=sharing

• Nehezebb:
• https://docs.google.com/document/d/1IaH1xp9S2fGGtTYVg--

SsDZv856iBvgjFZMEPAakjW0/edit?usp=sharing

https://docs.google.com/document/d/1GlhNswi-99NgKt4ujqMG0aGbCjFWqUBQ1aWcSk8CXqc/edit?usp=sharing
https://docs.google.com/document/d/1GlhNswi-99NgKt4ujqMG0aGbCjFWqUBQ1aWcSk8CXqc/edit?usp=sharing
https://docs.google.com/document/d/1IaH1xp9S2fGGtTYVg--SsDZv856iBvgjFZMEPAakjW0/edit?usp=sharing
https://docs.google.com/document/d/1IaH1xp9S2fGGtTYVg--SsDZv856iBvgjFZMEPAakjW0/edit?usp=sharing

8. Blokk – Külső csomagok
• Megérteni a külső csomagok fogalmát, és hasznosságát
• Ismerni a PyPi-t (Python Package Index) mint központi tárolót
• Megtanulni a pip csomagkezelő alapvető parancsait
• Megérteni a virtuális környezetek (venv) fontosságát
• Tudni telepíteni és importálni külső csomagokat Python

szkriptben

A Python ereje, a csomagok!
• A Python alapvetően sok mindent meg tud csinálni
• Az igazi ereje viszont a hatalmas közösség által fejlesztett

csomagokban rejlik.
• A csomagok előre megírt kódgyűjtemények speciális feladatokra

• Pl.: Adatfeldolgozás, webfejlesztés, képfeldolgozás, játékok, stb…

• Példa: Tűzgyújtás eszközökkel, és eszközök nélkül

PyPi (Python Package Index)
• https://pypi.org/
• A hivatalos központi hely, ahonnan a legtöbb publikus Python

csomag letölthető

https://pypi.org/

pip – Python csomagkezelő
• A python beépített csomagkezelője
• Ezzel tudunk csomagokat letölteni, és letörölni
• Általában parancssorból szoktuk használni, de Pycharmba van

beépített csomagkezelő pip használatával

pip parancsok – I
• pip install csomag – Letölti a „csomag” nevű csomagot
• pip install csomag==verzio – Letölti a „csomag” csomagot a

„verzio” verzióval
• pip list – Kilistázza a telepített csomagokat
• pip show csomag – Részleteket ír ki a csomag nevű csomagról
• pip uninstall csomag – Letörli a telepített csomag nevű

csomagot

pip parancsok – II
• pip freeze – Kilistázza a csomagokat úgy, hogy azokat 1

paranccsal lehessen telepíteni.
• pip freeze > requirements.txt – Belerakja a „requirements.txt”

fájlba a csomagok leírását, úgy hogy azt 1 paranccsal lehet
telepíteni

• pip install –r requrements.txt – Telepíti a requirements.txt-ben
található csomagokat

Pycharmba épített csomagkezelő
• a

Demo - Csomagok
• Hozzunk létre egy új projektet PyCharm-ban (figyelve, hogy

létrejön-e a venv). Telepítsük a pyjokes és emoji csomagokat.
Írjunk egy rövid szkriptet, ami kiír egy véletlen viccet a pyjokes
segítségével, majd kiír egy emojit az emoji csomag
használatával. Generáljunk requirements.txt-t.

Gyakorló - Csomagok
• Egyszerűbb feladatok:

• https://docs.google.com/document/d/1tc94zUmgp0DMX4uG-
crQ7FcXeJTGRmeHJd1CniYezMc/edit?usp=drive_link

https://docs.google.com/document/d/1tc94zUmgp0DMX4uG-crQ7FcXeJTGRmeHJd1CniYezMc/edit?usp=drive_link
https://docs.google.com/document/d/1tc94zUmgp0DMX4uG-crQ7FcXeJTGRmeHJd1CniYezMc/edit?usp=drive_link

9. Blokk – Pandas csomag
• Megismerkedni a Pandas könyvtárral mint alapvető

adatelemzési eszközzel.
• Megérteni a két fő Pandas adatszerkezetet: Series és

DataFrame.
• Tudni létrehozni egyszerű Series-t és DataFrame-et Python

listákból/szótárakból.
• Képesnek lenni alapvető adatelérési és -manipulációs

műveletekre: oszlopok/sorok kiválasztása, adatok megtekintése
• Tudni beolvasni adatokat egyszerű CSV fájlból.

Mi a Pandas?
• Magas szintű Python könyvtár gyors, rugalmas és kifejező

adatszerkezetekkel, kifejezetten táblázatos és idősoros adatok
kezelésére tervezve

• Az adatelemzés svájci bicskája Pythonban
• Főbb felhasználási területek: adatbeolvasás/-írás (CSV, Excel,

SQL stb.), adattisztítás, adattranszformáció, elemzés,
vizualizáció előkészítése

Alap adatszerkezetei - Létrehozás
• Series létrehozása

• pd.Series(adat) – Az adat lehet egy lista, vagy dictionary
• sr-nek szoktuk rövidíteni változóknál

• DataFrame létrehozása
• pd.DataFrame(data, columns=[oszlopok]) – Az adat lehet egy lista, vagy

dictionary ahol a kulcsok (címkék) az oszlopnevek, és az értékek a
listák/Series-ek

• df-nek szoktuk rövidíteni változóknál

Alapvető műveletek – I (Kiíratások)
• df.head(n) - Kiírja az első „n” sort
• df.tail(n) - Kiírja az utolsó „n” sort
• df.info() - Kiír adatokat a DataFrame-ről
• df.describe() – Statisztikai összefoglalót ad a DataFrame-ről
• df.shape() – Sorok, és oszlopok számát írja ki

Alapvető műveletek – II (Oszlopok)
• df[„oszlopnév”] vagy df.oszlopnév – egy Series-t ad vissza, ami

az adott oszlophoz tartozik
• df[[„oszlop1”, „oszlop2”]] – Több oszlopot választ ki, és egy

DataFrame-et ad vissza

Alapvető műveletek – III (Sor)
• df[0:3] – Szeleteléssel úgy ahogyan listáknál is
• df.loc[„index-címke”] – A címke alapján
• df.iloc[0] vagy df.iloc[0:3] – A megadott pozíción lévő oszlop
• df[feltétel] – Kiválasztja azokat a sorokat ahol a feltétel igaz

• df[df[„oszlop”] > ertek] – Használata
• Pl.: df[df[„suly”] > 70] – Kiválasztja a sorokat ahol a súly nagyobb mint

70

Alapvető műveletek – IV (Adatbeolvasás)
• pd.read_csv(„fajlnev.csv) – Csv adattípus beolvasására
• pd.read_excel(„fajlnev.xlsx”) – Excel beolvasására

Demo - Pandas
• Hozzunk létre egy Pandas DataFrame-et néhány hallgató

adatával (név, kor, szak, átlag). Végezzünk el néhány alapvető
műveletet: jelenítsük meg az első pár sort, az
oszlopinformációkat, válasszuk ki csak a neveket, majd szűrjük
ki azokat a hallgatókat, akiknek az átlaga egy bizonyos érték
felett van.

Demo - Pandas
• Hozzunk létre egy Pandas DataFrame-et néhány hallgató

adatával (név, kor, szak, átlag). Végezzünk el néhány alapvető
műveletet: jelenítsük meg az első pár sort, az
oszlopinformációkat, válasszuk ki csak a neveket, majd szűrjük
ki azokat a hallgatókat, akiknek az átlaga egy bizonyos érték
felett van.

Gyakorlás - Pandas
• Egyszerűbb feladatok:

• https://docs.google.com/document/d/1n_KvY8G4OQ_uYxVVOHWmj_P
Z8O-bu5gccjbksPzQbMU/edit?usp=drive_link

https://docs.google.com/document/d/1n_KvY8G4OQ_uYxVVOHWmj_PZ8O-bu5gccjbksPzQbMU/edit?usp=drive_link
https://docs.google.com/document/d/1n_KvY8G4OQ_uYxVVOHWmj_PZ8O-bu5gccjbksPzQbMU/edit?usp=drive_link

	1. dia: Kezdő Python programozás
	2. dia: Csonka Valentin Viktor
	3. dia: Miért Python?
	4. dia
	5. dia: Kurzus célja
	6. dia: Kurzus felépítése
	7. dia: A kurzus végi tudás
	8. dia: Feladattár
	9. dia: 1. Blokk: Bevezetés, első program
	10. dia: Mi a Programozás?
	11. dia: Programok futása
	12. dia: Programozáshoz használt eszközök
	13. dia: IDE – Integrated Development Environment (Fejlesztői környezet)
	14. dia: Pycharm mint IDE
	15. dia: Demo – Pycharm alapvető dolgok
	16. dia: Adatok típusa
	17. dia: Print függvény
	18. dia: Demo – Első program
	19. dia: Gyakorló feladatok – Szekvenciális programozás
	20. dia: 2. Blokk: Változók és Alapműveletek
	21. dia: Mi a változó?
	22. dia: Változók típusai
	23. dia: Változók elnevezése
	24. dia: Aritmetikai operátorok (matematikai műveletek)
	25. dia: Felhasználói bemenet
	26. dia: Típus konverzió (típus váltás)
	27. dia: Demo - Változók
	28. dia: Gyakorló feladatok - Változók
	29. dia: 3. Blokk: Listák
	30. dia: Mi a lista?
	31. dia: Listák indexelése (lista elemeinek sorszáma)
	32. dia: Listák szeletelése
	33. dia: Listák módosíthatósága
	34. dia: Alapvető lista függvények
	35. dia: Demo - Listák
	36. dia: Gyakorló feladatok - Listák
	37. dia: 4. Blokk: Elágazások
	38. dia: Indentáció (behúzás)
	39. dia: Mi az elágazás?
	40. dia: Az if utasítás
	41. dia: Az elif utasítás
	42. dia: Az else utasítás
	43. dia: Összehasonlító operátorok
	44. dia: Logikai operátorok
	45. dia: Demo - Elágazások
	46. dia: Gyakorló feladatok - Elágazások
	47. dia: 5. Blokk: Ciklusok
	48. dia: Miért kellenek a ciklusok?
	49. dia: A for ciklus
	50. dia: A for ciklus range használatával
	51. dia: A while ciklus
	52. dia: Ciklusvezérlő utasítások
	53. dia: Demo - Ciklusok
	54. dia: Gyakorlófeladatok - Ciklusok
	55. dia: 6. Blokk - Alapok Ismétlése
	56. dia: Szekvencia
	57. dia: Változók
	58. dia: Egyszerű Változók
	59. dia: Összetett Változók
	60. dia: Típus konverzió (Típus váltás)
	61. dia: Felhasználói bemenet
	62. dia: Listák
	63. dia: Alapvető lista függvények
	64. dia: Elágazások
	65. dia: Logikai operátorok (logikai műveletek)
	66. dia: Ciklusok
	67. dia: Ciklusok
	68. dia: Demo - Ismétlés
	69. dia: Gyakorlás - Ismétlés
	70. dia: 7. Blokk - Függvények
	71. dia: Miért van szükségünk függvényekre?
	72. dia: Függvények definiálása
	73. dia: A return utasítás
	74. dia: A változók hatásköre
	75. dia: A változók hatásköre - Lokális
	76. dia: A változók hatásköre - Globális
	77. dia: Demo - Függvények
	78. dia: Gyakorlófeladatok - Függvények
	79. dia: 8. Blokk – Külső csomagok
	80. dia: A Python ereje, a csomagok!
	81. dia: PyPi (Python Package Index)
	82. dia: pip – Python csomagkezelő
	83. dia: pip parancsok – I
	84. dia: pip parancsok – II
	85. dia: Pycharmba épített csomagkezelő
	86. dia: Demo - Csomagok
	87. dia: Gyakorló - Csomagok
	88. dia: 9. Blokk – Pandas csomag
	89. dia: Mi a Pandas?
	90. dia: Alap adatszerkezetei - Létrehozás
	91. dia: Alapvető műveletek – I (Kiíratások)
	92. dia: Alapvető műveletek – II (Oszlopok)
	93. dia: Alapvető műveletek – III (Sor)
	94. dia: Alapvető műveletek – IV (Adatbeolvasás)
	95. dia: Demo - Pandas
	96. dia: Demo - Pandas
	97. dia: Gyakorlás - Pandas

