

ADÁSVÉTEL SZERZŐDÉS

Szerződés száma: 67/Ny/2022/SZTE/4.

I. A SZERZŐDÉST KÖTŐ FELEK

egyrésszről

Név:

Székhely:

Aláírásra jogosult képviselője:

Intézményi azonosító:

Adószám:

Intézmény statisztikai számjel:

mint **Vevő** (a továbbiakban: Vevő)

Szegedi Tudományegyetem

HU-6720 Szeged, Dugonics tér 13.

Prof. Dr. Rovó László rektor,

Dr. Fendler Judit kancellár

FI 62198

19308650-2-06

19308650-8542-563-06

másrésszről

Név:

Székhely:

Adószám:

Cégjegyzékszám:

Képviseli:

Pénzforgalmi számla száma:

Pénzforgalmi szolgáltató:

a továbbiakban: Eladó,

Vin-Tech Europa Kft.

2091 Etyek, Temető utca 48.

24942940-2-07

07 09 025120

Marácz László ügyvezető

10403208-50526654-50741004

K&H Bank Zrt.

Név:

Székhely:

Adószám:

Cégjegyzékszám:

Képviseli:

Pénzforgalmi számla száma:

Pénzforgalmi szolgáltató:

a továbbiakban: Eladó,

Vinci Technologies S.A.

27 B, Rue de Port, 92022 Nanterre, France

FR86 689 801 686

1980 B 09879

Marácz László, meghatalmazott

FR76 3000 2056 8400 0006 0043 S35

Le Credit Lyonnaise

a továbbiakban: Fél, illetve együttesen: Felek.

II. PREAMBULUM

II.1. A Vevő, mint Ajánlatkérő a közbeszerzésekkel szóló 2015. évi CXLIII. törvény (a továbbiakban: Kbt.) alapján „Komplett katalizátor készítő, laboratóriumi és félüzemi reaktorrendszer beszerzése” tárgyban, uniós eljárás rend szerinti nyílt közbeszerzési eljárás folytatott le. A közbeszerzési eljárás 4. részének (Rész tárgya: Mérőnövelt félüzemi multireaktor-rendszer) nyertese Eladó lett. Jelen Szerződés (továbbiakban Szerződés) megkötésére a Kbt. 131. §-a szerint, a fenti közbeszerzési eljárás eredménye alapján kerül sor.

II.2. Felek a Szerződést a közbeszerzési eljárás során keletkezett közbeszerzési dokumentumokban foglaltak szerint kötik meg. Felek közbeszerzési dokumentumok alatt a Kbt. 3. § 21. pontja szerinti fogalmat értik. Ezen dokumentumok a Szerződés elválaszthatatlan, szerves részét képezik függetlenül attól, hogy fizikai értelemben a Szerződés mellékletét alkotják-e.

II.3. Szerződő Felek a Ptk. 6:63. § (5) bekezdésében foglaltaktól eltérően abban állapodnak meg, hogy a közöttük létrejött megállapodás kizárolag a Szerződésben foglaltakra, valamint a közbeszerzési dokumentumokban foglaltakra terjed ki, annak nem képezi részét a Felek között korábban kialakult szokás, gyakorlat, illetve a Szerződés tárgya szerinti üzletágban a hasonló jellegű szerződés alanyai által széles körben ismert és rendszeresen alkalmazott szokás.

III. A SZERZŐDÉS TÁRGYA

III.1. A szerződés tárgya a Vevő ajánlati felhívásában (TED: 2022/S 216-622093, KÉ: 23649/2022) és a kapcsolódó közbeszerzési dokumentumokban részletesen meghatározott minőségű, közbeszerzési tárgya szerinti **Méretnövelt félüzemi multireaktor-rendszer** beszerzése (továbbiakban: Áru) a Szerződés szerinti feltételekkel való határidős adásvétele (szállítása, üzembe helyezése és betanítása).

III.2. A Szerződés tárgya szerinti Áru részletes leírását a Szerződés mellékletében rögzített Műszaki leírás tartalmazza, az Árunak és a teljesítés feltételeinek meg kell felelnie a műszaki leírásban foglaltaknak, valamint az Eladó ajánlatában rögzített leírásnak, jellemzőknek és hatályos minőségi bizonyítványoknak. Az Árunak érvényes forgalomba hozatali engedéllyel kell rendelkeznie.

III.3. Az üzembe helyezés – az Áru jellegéhez mérten – magában foglalja: az Áru leszállítását, beszerelését; rendeltetésszerű használatra alkalmas módon történő üzembe helyezését, az ehhez szükséges anyagok, berendezések biztosításával; az Eladó szakmérnöke által gyári beállítás, tesztmérés/próbamérés elvégzését; az érvényes forgalomba hozatali engedély bemutatását; az üzembe helyezési jegyzőkönyv felvételét.

III.4. Az Áru használatának betanítása magában foglalja a kezelőszemélyzet, 5 fő betanítását, 2x 8 óra időtartamban, valamint a betanításról készült jegyzőkönyv felvételét.

III.5. A szerződés tárgyat képezi továbbá a készülék telepítéséhez és üzemeltetéséhez szükséges valamennyi berendezés és szerelvény biztosítása, a készülék felhasználó által elvégezhető rutin karbantartásához és beállításához szükséges szerszámok vagy műszerek biztosítása (amennyiben ezek szükségesek) és a teljes körű használati utasítást és műszaki dokumentációt angol vagy magyar nyelven.

III.6. Eladó köteles a Vevő számára új, azaz bontatlan és használatlan, rendeltetésszerű használatra alkalmas Árut szállítani. Vevő nem biztosít lehetőséget használt (vagy akár felújított) Áru szállítására, tehát csak új, azaz nem használt, nem gyárilag felújított és nem demo Áru szállítása megengedett.

IV. VÉTELÁR

IV.1. Szerződésszerű teljesítés esetén Vevő köteles az Áru átvételére és **nettó 364 401 125 - Ft + ÁFA, azaz nettó háromszázhatvannégymillió-négyszázegyezer-százhuzzonöt forint + ÁFA összegű vételár** Eladó részére történő megfizetésére. A részletes fizetési feltételeket a Szerződés V. fejezete tartalmazza.

Az ajánlati ár bontása:

	Ajánlati ár (nettó HUF)
1. reaktorcsomag - 3 reaktoregység FT és RWGS számára	220 591 175
2. reaktorcsomag - 2 reaktoros egység FT és CO₂ hidrogénezéshez	143 809 950

IV.2. A vételár tartalmazza a Szerződés teljesítésével összefüggő összes adót, vámot, illetéket, engedélyezési díjat, szállítási költséget, a behozatállal, forgalomba hozatállal kapcsolatban felmerülő összes költséget, amelyeket az Eladó viseli, kivéve azokat a költségeket, amelyeket valamely jogszabály kötelezően a Vevő terhére állapít meg. A vételár tartalmazza továbbá a Szerződés III.3-III.5. pontjában foglaltak költségét.

IV.3. A IV.1. pontban meghatározott vételár összege végleges, a Szerződés tartamára rögzített ellenérték, a Szerződés hatálya alatt nem emelhető, és amely tartalmaz valamennyi, a Szerződés tárgyával (Szerződés III. fejezet) és teljesítésével összefüggő díjat és költséget.

V. FIZETÉSI FELTÉTELEK

V.1. A Vevő a Szerződés IV.1. pontja szerinti vételárat a Szerződés VI.4. pontja szerinti teljesítési helyen való igazolt – a hiba és hiánymentes – teljesítést követően elégíti ki a Ptk. 6:130. § (1)-(2) bekezdései szerinti határidőn belül a Kbt. 135. § (1), (6) bekezdésében foglaltak szerint, **30 napon belül**. A kifizetés pénzneme magyar forint (HUF), a kifizetés átutalással történik.

Vevő reaktorcsomagonként az alábbi számlázási lehetőséget biztosítja Vevő részére:

- Eladó a vételár legfeljebb 30%-ának mértékéig előleg igénylésére jogosult.
- Eladó az előlegszámlán túl 1 db részszámla és 1 db végszámla benyújtására jogosult.

Részszámla értéke a szerződés nettó értékének 20%-a.

A részszámla benyújtásának feltétele az alábbi részteljesítés igazolása:

- A teljes gyártási dokumentáció elkészülte, amely magában foglalja a P&ID diagramot, a tartályok pontos rajzait, az egész rendszer 3D modelljét, az irányítástechnikai rendszer leírását, a külső csatlakozási pontokat (elektromos, víz, szennyvíz).

Az előleg elszámolása a végszámlából történik.

Amennyiben az üzembehelyezés a Vevő miatt nem történik meg a szállítást követő 6 (hat) hónapon belül és az olyan okból következett be, amelyért a Vevő felelős, úgy Eladó jogosult benyújtani a végszámlát.

V.2. **Számlázási cím: 6720 Szeged, Dugonics tér 13., Szegedi Tudományegyetem**

Számlaküldési cím: 6720 Szeged, Dugonics tér 13., Szegedi Tudományegyetem,

- az 1. reaktorcsomag esetében Ács-Sándor Tímea részére
- a 2. reaktorcsomag esetében Pitóné Tordai Gyöngyi részére

A 2007. évi CXXVII. törvény rendelkezései alapján Vevő mind a papír alapú, mind elektronikus számlák kiállítására lehetőséget biztosít.

Elektronikus számla kiállítása esetén felhívjuk Eladó figyelmét, hogy a számla befogadásához Vevő elfogadó nyilatkozatot állít ki, melynek feltétele, hogy Eladó a számlát elektronikusan az alábbi címre

küldje meg: bejovo.szamla@gmf.u-szeged.hu; pitone.tordai.gyongyi@szte.hu;
acs-sandor.timea@szte.hu

Az elektronikus számlának minden esetben tartalmaznia kell az adott ügylethez kapcsolódó szerződés és/vagy kötelezettségvállalás gazdálkodási ügyviteli rendszerben (EOS) rögzített nyilvántartási számát, valamint a pályázat azonosító számát. Ennek hiánya esetén a számla nem azonosítható és nem kerül befogadásra, feldolgozásra, illetve annak kifizetése iránti intézkedés nélkül Eladó részére Vevő pénzügyi irodája javításra visszaküldi.

Nem a fent megjelölt címre küldött számla esetén a Vevő késedelme kizárt.

V.3. A Szerződés ellenértéke az **1. reaktorcsomag esetében az ÉZFF/956/2022-ITM_SZERZ** projektnél a **10028007-00282802-00000000** bankszámlaszámáról, míg a **2. reaktorcsomag esetében RRF-2.3.1-21-2022-00009** projektnél a **10028007-00282802-01020056** bankszámlaszámáról kerül a Vevő által megfizetésre, a támogatás intenzitása: 100,000000% mértékű és a finanszírozás módja: utófinanszírozás.

V.4. Eladó köteles a számlán feltüntetni a kapcsolódó projekt számát (ÉZFF/956/2022-ITM_SZERZ vagy RRF-2.3.1-21-2022-00009) valamint a Szerződés iktatószámát.

V.5. Eladó tudomásul veszi, hogy az általa kibocsátandó számláknak a mindenkor hatályos jogszabályokban előírt formai és tartalmi követelményeknek meg kell felelnie. Az Eladó által kiállított számlát Vevő – a beérkezést követően – ellenőrzi. Amennyiben a számla nem tartalmazza bármely szükségszerű és elválaszthatatlan mellékletet, akkor Vevő a számlát nem fogadja be, kifizetése iránt nem intézkedik, a számlát javításra az Eladónak visszaküldi. Ha Vevő a számlát, vagy annak valamely tételeit, vagy részét kifogásolja, akkor az erről szóló értesítést követően – a nem vitatott tételek tekintetében – Eladó köteles haladéktalanul új számlát kibocsátani. A vitatott tételek vagy részei összege vonatkozásában Vevő és Eladó egyeztetni köteles

V.6. Vevő a vételárat Eladó **K&H Bank Zrt.** banknál vezetett **10403208-50526654-50741004** számú számlájára való átutalással egyenlíti ki. Az Eladó az áruszámlához csatolni köteles az átvételi elismervényét. Eladó a teljesítési igazolás birtokában jogosult az igazolt teljesítés számlázására.

V.7. A Vevő késedelmes fizetése esetén az Eladó a Ptk. 6:155 § szerinti késedelmi kamat érvényesítésére jogosult.

V.8. Vevőnek a Szerződésből eredő semmilyen jogosultságát (beszámítás, visszatartás) nem korlátozhatja az Eladó azzal, hogy a Szerződésből eredő követelését engedményezi, faktorálja vagy azon zálogjogot alapít.

V.9. Az Eladó a Kbt. 136. § (1) bekezdése alapján kifejezetten vállalja, hogy

- a nem fizethet, illetve számolhat el a szerződés teljesítésével összefüggésben olyan költségeket, amelyek a 62. § (1) bekezdés k) pont ka)–kb) alpontja szerinti feltételeknek nem megfelelő társaság tekintetében merülnek fel, és amelyek az Eladó adóköteles jövedelmének csökkentésére alkalmasak;
- a szerződés teljesítésének teljes időtartama alatt tulajdonosi szerkezetét a Vevő számára megismerhetővé teszi és a Kbt. 143. § (3) bekezdése szerinti ügyletekről az Vevőt haladéktalanul értesíti.

V.10. Eladó kifejezetten vállalja továbbá, hogy a Szerződés teljesítésének teljes időtartama alatt tulajdonosi szerkezetét a Vevő számára megismerhetővé teszi és a Kbt. 143. § (3) bekezdése szerinti ügyletekről a Vevőt haladéktalanul értesíti.

V.11. A külföldi adóilletőségű Eladó köteles a szerződéshez arra vonatkozó meghatalmazást csatolni, hogy az illetősége szerinti adóhatóságtól a magyar adóhatóság közvetlenül beszerezhet az Eladóra vonatkozó adatokat az országok közötti jogsegély igénybevétele nélkül (Kbt. 136. § (2) bekezdés).

V.12. Az ellenérték megfizetésére a Ptk., a Kbt., a 2011. évi CXCV. törvény, a 368/2011. (XII.31.) Korm. rendelet vonatkozó rendelkezései irányadóak.

VI. SZERZŐDÉS HATÁLYA ÉS IDŐTARTAMA

VI.1. A Szerződés minden Fél által történő aláírásának napján lép hatályba

A Szerződés időtartama: A Szerződés határozott időtartamra a szerződés hatályba lépésétől számított 8 hónapra jön létre, amennyiben a teljesítés utolsó napja munkaszüneti nap, úgy az azt követő első munkanapig terjedő határozott időtartamig. Az Áru szállítását és üzembe helyezését ezen időtartamon belül, a határidő lejártáig kell teljesíteni.

VII. TELJESÍTÉS, ÁTADÁS-ÁTVÉTEL

VII.1. Eladó köteles a szállítás várható időpontja előtt 3 munkanappal a szállítás helye szerinti szervezeti egységet értesíteni. Vevő az előteljesítés lehetőségét biztosítja, azzal, hogy az Eladó előszállításra csak a Vevő előzetes írásos hozzájárulásával jogosult.

VII.2. Eladó köteles az Áru feladását/átadását követően az eredeti áruszámlát a Vevő részére megküldeni, az átvevő hely átvételi elismervényének, valamint az üzembe helyezéshez és betanításhoz kapcsolódó egyéb dokumentumok és jegyzőkönyvek mellékelésével. A leszállított Áruhoz szállítólevelet is köteles mellékelni az Eladó, amelyen a termék gyártási száma, illetve a beazonosításra alkalmas adat is szerepel.

VII.3. A teljesítés helye (szállítási cím): Science Park, Szeged HRSZ: 01392/23

VII.4. Eladó az Áru szállításával egyidejűleg köteles a készülék telepítéséhez és üzemeltetéséhez szükséges valamennyi berendezést és szerelvényt biztosítani, a készülék felhasználó által elvégezhető rutin karbantartásához és beállításához szükséges szerszámokat vagy műszereket biztosítani (amennyiben ezek szükségesek) és a teljes körű használati utasítást és műszaki dokumentációt, CE tanúsítvány(okat) angol vagy magyar nyelven Vevő részére átadni. Eladó köteles továbbá az arra vonatkozó rendeltetésszerű használathoz szükséges valamennyi okiratot, dokumentációt (így különösen, de nem kizárolagosan a forgalomba hozatalra vonatkozó okmányokat, valamint a műszaki leírást, a garanciára vonatkozó dokumentumot, stb.) a Vevő részére átadni, illetve elektronikus úton elérhetővé tenni, továbbá a rendeltetésszerű használathoz szükséges tájékoztatást a Vevő által kijelölt személyek részére megadni.

VII.5. Az árunak a teljesítési helyre történő eljuttatása, szállítása az Eladó feladata. Az Eladó a leszállítandó Árut a szállítás módjának, illetve az előírásoknak megfelelő csomagolásban szállítja le a szükséges engedélyek, magyar (vagy angol) nyelvű áruleírások, egyéb szükséges dokumentumok beszerzésével, valamint azoknak a Vevő részére történő átadásával. Amennyiben ehhez fuvarozó vállalkozást vesz igénybe, a fuvarozó tevékenységéért a Vevő irányában az Eladót terheli a felelősség. Az árunak – fuvarozótól történő átvételekor – a Vevő a csomagoláson külsőleg észlelhető sérüléseket és a szállított csomagok esetleges mennyiségi hiányát vizsgálja, és ezen körülmenyeket a szállítólevélen feltünteti.

VII.6. Amennyiben Vevő – rajta kívülálló okok miatt – az Eladó által közölt határidőben az árut átvenni nem tudja, köteles erről a tényről Eladót haladéktalanul értesíteni, megjelölve az áru átvételére általa kért legkorábbi időpontot. Amennyiben a Vevő által így meghatározott határnak az Eladó által közölt átvétel napjától számított 30 napnál hosszabb, Eladó jogosult a 30 napon túli időszakra a raktározással, őrzéssel kapcsolatban felmerült igazolt költségeket felszámítani a Vevőnek.

VII.7. A csomagolás felbontását, az Áru mennyiségi átadását a rendeltetési helyen az Eladó szakemberei végzik a Vevő jelenlétében. A csomagbontásról, az Áru mennyiségi átvételéről Felek jegyzőkönyvet vesznek fel, amelyben a bontás során tapasztalt sérüléseket vagy hiányokat is rögzíteni kell.

VII.8. Vevő az Áru átadás-átvétele során jogosult elvégezni minden vizsgálatot és mérést annak megállapítására, hogy az Áru megfelel-e a szerződésben foglalt feltételeknek, így különösen a specifikációban leírtaknak.

VII.9. Eladó kötelezettségét képezi továbbá a leszállított és beüzemelt Áru szakszerű használatának elősegítése végett a Vevő részéről felálló kezelőszemélyzet betanítása a III. fejezetben leírtak szerint.

VII.10. Eladó az Áruhoz köteles 1 példány magyar/angol nyelvű kezelési utasítást mellékelni. Az áru jegyzőkönyvi átvételét a fenti dokumentáció hiányában a Vevő jogosult megtagadni.

VII.11. Ha az átvételt a Vevő minőségi hiba, hiány miatt megtagadja, a kárveszély mindenkorban az Eladót terheli, amíg a hibát, hiányosságot Eladó ki nem küszöböli. Ha az átadás-átvétel során a Vevő azt állapítja meg, hogy az Áru nem felel meg a szerződésben foglalt feltételeknek, így különösen a specifikációban leírtaknak, akkor a Vevő az Áru kicsérélését követelheti, és megjelölheti a kicsérélés határidejét, az Eladó pedig köteles a Vevő által megjelölt igényt haladéktalanul és törlesztéssel kielégíteni.

VII.12. Sikertelen átvétel esetén az Eladó köteles a hibák elhárítása után az Áru átadására új időpontot javasolni. A megismételt átvétellel kapcsolatos minden költség az Eladót terheli.

VII.13. Eredményes átadás esetén az átadás átvéli jegyzőkönyv Vevő általi aláírásának napján száll át a kárveszély a Vevőre.

VII.14. Vevő a Szerződés teljesítésének elismeréséről (teljesítésigazolás) vagy az elismerés megtagadásáról legkésőbb az Eladó teljesítésétől, vagy az erről szóló írásbeli értesítés készítésétől számított tizenöt napon belül írásban köteles nyilatkozni (Kbt. 135. § (1) bekezdés).

VII.15. Eladó legkésőbb a szerződés megkötésének időpontjában köteles a Vevőnek valamennyi olyan alvállalkozót bejelenteni, amely részt vesz a szerződés teljesítésében, és – ha a megelőző közbeszerzési eljárásban az adott alvállalkozót még nem nevezte meg – a bejelentéssel együtt nyilatkozni arról is, hogy az általa igénybe venni kívánt alvállalkozó nem áll kizáró okok hatálya alatt. Az Eladó a szerződés teljesítésének időtartama alatt köteles a Vevőnek minden további, a teljesítésbe bevonni kívánt alvállalkozót előzetesen bejelenteni. Eladó jelen szerződés aláírásával nyilatkozik, hogy a teljesítésbe nem von be kizáró okok hatálya alatt álló alvállalkozót.

VII.16. Az Eladó a Kbt. 138. § (2) bekezdése alapján a teljesítéshez az alkalmasságának igazolásában részt vett szervezetet a Kbt. 65. § (7) szerint az eljárásban bemutatott kötelezettségvállalásnak megfelelően, valamint a 65. § (9) bekezdésében foglalt esetekben és módon köteles igénybe venni. E szervezetek bevonása akkor maradhat el, vagy helyettük akkor vonható be más (ideértve az átalakulás, egyesülés, szétválás útján történt jogutótlás eseteit is), ha az Eladó e szervezet nélkül vagy a helyette bevont új szervezettel is megfelel - amennyiben a közbeszerzési eljárásban az adott alkalmassági követelmény tekintetében bemutatott adatok alapján az ajánlatkérő szükítette az eljárásban részt vevő gazdasági szereplők számát, az eredeti szervezetekkel egyenértékű módon megfelel - azoknak az alkalmassági követelményeknek, amelyeknek az Eladó a közbeszerzési eljárásban az adott szervezettel együtt felelt meg.

VII.17. Az Eladó a Polgári Törvénykönyvről szóló 2013. évi V. törvény (a továbbiakban: Ptk.) 6:148. § (1) bekezdése alapján úgy felel az általa igénybe vett alvállalkozók, vagy bármely közreműködő magatartásáért és szerződésszerű teljesítéséért, mintha maga járna el, míg a Szerződés szerinti feladat teljesítését ellátó alkalmazottai tekintetében a Ptk. 6:540. § szerint vállal kötelezettséget és felelősséget.

VII.18. A Szerződés teljesítése során Felek a jóhiszeműség és tisztelettel követelményének megfelelően kölcsönösen együttműködve kötelesek eljárni, egymás feladatainak teljesítését kölcsönösen segítik és minden, a feladatok maradéktalan ellátásához szükséges információt egymás számára biztosítanak.

VIII. SZAVATOSSÁG, JÓTÁLLÁS

VIII.1. Az Eladó a szállítást követően **24+24 hónap időszakra** szóló teljes körű jótállást vállal a leszállított eszközre, és szavatolja, hogy a szállított Áru alkalmas a rendeltetésszerű használatra, valamint mentes mindenfajta fejlesztési, anyagbeli, kivitelezési, illetve az Eladó vagy közreműködői tevékenységevel vagy mulasztásával bármilyen más módon összefüggő hibáktól. A leszállított Áru esetében a szerződés időszaka alatti meghibásodást az Eladó köteles a Vevő írásos értesítésének átvételét követően haladéktalanul kivizsgálni és ésszerű határidőn, de legfeljebb 30 napon belül az Eladó telephelyén

megjavítani. A jótállási idő alatt a garanciális javítás egyetlen költségeleme sem terhelhető a Vevőre, így nem számolható fel kiszállási díj vagy munkabér, szállítási költség.

VIII.2. A Vevő köteles írásban haladéktalanul értesíteni az Eladót a szavatosság, illetve a jótállás alapján érvényesíteni kívánt bármilyen igényéről. Ha az Eladó nem, vagy nem szerződésszerűen tesz eleget a kötelezettségének, akkor a Vevő az Eladó költségére, kockázatára és felelősségejére jogosult - de nem köteles - minden ésszerű intézkedést megtenni az Áru kicserélése érdekében.

IX. A SZERZŐDÉSSZEGÉST BIZTOSÍTÓ MELLÉKKÖTELEZETTSÉGEK

IX.1. A Szerződésben rögzített bármely kötelezettsége késedelmes vagy hibás teljesítés esetén, ha az olyan okból következett be, amelyért az Eladó felelős, kötbér köteles fizetni a Vevőnek, a Ptk. 6:186. § (1) bekezdése alapján. A kötbér akkor is jár, ha a Vevőnek kára nem merült fel. Vevő a Szerződés VIII. pontjában rögzítettek szerint: késedelmi, valamint meghiúsulási kötbér követelésére jogosult.

Késedelem:

IX.2. A Vevő késedelembe esik, ha

- a Szerződésben írt vételárat határidőben nem, vagy csak részben fizeti meg; illetve
- a szerződésszerűen felajánlott teljesítést nem fogadja el, vagy elmulasztja azokat az intézkedéseket, nyilatkozatokat, amelyek szükségesek ahhoz, hogy az Eladó szerződésszerűen teljesíteni tudjon.

IX.3. A Vevő köteles megtéríteni az Eladónak a késedelemből eredő kárát kivéve, ha bizonyítja, hogy a késedelmet ellenőrzési körén kívül eső, a szerződéskötés időpontjában előre nem látható körülmény okozta, és nem volt elvárható, hogy a körülményt elkerülje, vagy a kárt elhárítsa.

IX.4. Az Eladó késedelmesen teljesít:

- ha a Szerződésben és annak mellékleteiben megállapított teljesítési határidő a Szerződés szerinti Áru vonatkozásában eredménytelenül eltelt,
- más esetekben, ha kötelezettségét a Vevő felszólítására (a Vevő által megjelölt határidőn belül) nem teljesíti.

IX.4. Az Eladó a Szerződés szerinti kötelezettsége teljesítésének késedelme esetén, ha az olyan okból következett be, amelyért az Eladó felelős a Vevő késedelmi kötbérre jogosult. A késedelmi kötbér mértéke a késedelemmel érintett minden naptári nap után az Áru nettó szerződéses ellenértékének 0,5%-a/naptári nap, de legfeljebb az Áru nettó szerződéses ellenértékének 10%-a. A késedelmi kötbér maximális mértékének elérését követő naptól kezdődően Vevő jogosult a Szerződéstől elállni, illetve a Szerződést felmondani. A Szerződéstől való elállás, illetve annak felmondása esetén Vevő a Szerződés szerinti meghiúsulási kötbérre jogosult, amely érvényesítése esetén Vevő nem érvényesítheti a késedelmi kötbért.

IX.5. Vevő az Eladó szerződésszerű teljesítésig késedelmi kötbért érvényesít. A késedelem esetére kikötött kötbér megfizetése Eladót nem mentesíti a teljesítés alól. (Ptk. 6:187. § (1) bek.) A Vevő – függetlenül attól, hogy az Eladó a késedelmét kimentette-e – követelheti a teljesítést, vagy ha a késedelem következetében a Szerződés teljesítéséhez fűződő érdeke megszűnt elállhat a Szerződéstől, illetve felmondhatja azt. Az Eladó késedelme a Vevő egyidejű késedelmét kizárja. Eladó kizárolag akkor mentesül a késedelemnek az előzőekben írt következményei alól, ha a késedelem vis major miatt következett be.

Hibás teljesítés:

IX.6. Az Eladó szavatosságot vállal azért, hogy az Áru megfelel a jogszabályokban, a közbeszerzési dokumentumokban, az Eladó Ajánlatában, a Szerződésben (és mellékleteiben) meghatározott

minőségi és egyéb követelményeknek, illetve rendeltetésszerű használatra továbbá a célzott hatás kiváltására alkalmas.

IX.7. Eladó az Áru tekintetében szavatosságot vállal, hogy az a közbeszerzési dokumentumokban és az Eladó Ajánlatában részletezett leírásokkal mindenben megegyezik, az érvényes szabványoknak maradéktalanul megfelel, az Áru új, nem használt, nem felújított, mentes mindenféle tervezési, anyagbeli, kivitelezési hibától, valamint, hogy annak tulajdonjogát az Eladó a Vevő a részére jogosultan adja át.

IX.7. Az Eladó hibásan teljesít, ha a Szerződésben meghatározott Áru nem felel meg a műszaki leírásban meghatározott követelményeknek. Hibás teljesítés esetén Eladó a Vevő felszólításában meghatározott határidőn belül köteles biztosítani a hiba jellegétől függően a hiba kijavítását, illetve a kicsérélést. Amennyiben a hiba jellege (pl. az Áru kicsérélése/javíthatósága, a javítás módja, az értékcsökkenés mértéke) tekintetében a Vevő és az Eladó között vita merül fel, az Eladó köteles a saját költségére minősgvizsgáló szervek szakvéleményét beszerezni.

IX.9. Ha a hibás teljesítés miatt a Vevő teljesítéshez fűződő érdeke megszűnt – így különösen, de nem kizárolagosan, ha az Áru nem cserélhető, illetve nem javítható ki, az Eladó a kicsérélést/ kijavítást nem vállalja, vagy az Áru (annak egy részének, alkotórészének vagy tartozékának) kicsérélése/kijavítása rövid idő alatt értékcsökkenés és a Vevő érdekeinek sérelme nélkül nem lehetséges, a Vevő súlyos szerződésszegési okként elállhat a Szerződéstől, illetve felmondhatja azt.

IX.10. A Vevő az Eladó hibás teljesítése esetén kéri a hiba kijavítását a Ptk. 6:159. § (2) a) pontja alapján. A hibás teljesítésre, a szavatosságra és a jótállásra egyebekben a Ptk. és a Kbt. rendelkezései irányadók.

Meghiúsulás:

IX.11. Vevő súlyos szerződésszegési esetekben, meghiúsulás vagy nem teljesítés esetén jogosult a Szerződést felmondani, illetve attól elállni és ezen esetekben meghiúsulási kötbérét érvényesíteni. A meghiúsulási kötbér mértéke a Vevő a Szerződés Vevő általi felmondása, illetve a Szerződéstől való elállása esetén az Áru nettó szerződéses ellenértékének 20 %-a.

IX.12. A Vevő szerződésszegéssel okozott kárának megtérítését akkor is követelheti, ha a kötbérigényét nem érvényesítette. Vevő a kötbérek mellett érvényesítheti a kötbér meghaladó kárát. A nemteljesítés esetére kikötött kötbér érvényesítése a teljesítés követelését kizárra. Vevő nem jogosult a késedelmi kötbér mellett a meghiúsulási kötbér egyidejű megfizetésének követelésére.

IX.13. A Felek rögzítik, hogy bármely nem szerződésszerű teljesítés jogi fenntartás nélküli elfogadása a Vevő részéről nem értelmezhető joglemondásként azon igényről, amelyeket a Vevő szerződésszegés esetén érvényesíthet.

IX.14. Eladó tudomásul veszi, hogy a Vevő a Kbt. 142. § (1)-(2) bekezdései alapján köteles a szerződésszegésből eredő igényeket érvényesíteni és azt dokumentálni.

IX.15. Vevő tájékoztatja Eladót, hogy a Kbt. 142. § (5) bekezdése alapján Vevő köteles bejelenteni a Közbeszerzési Hatóságnak, ha az Eladó a Szerződésben rögzített kötelezettségeit súlyosan megszegi és ez a Szerződés felmondásához, attól való elálláshoz, kártérítés követeléséhez, vagy egyéb a Szerződésben rögzített jogkövetkezmény érvényesítéséhez vezetett, valamint, ha az Eladó olyan magatartásával, amelyért felelős, részben vagy egészben a Szerződés lehetetlenséét okozta.

IX.16. A kötbérek a szerződésszegések napján esedékessé válnak.

X. VIS MAIOR

X.1. Felek mentesülnek a Szerződésből fakadó kötelezettségeik nem vagy részleges teljesítésével kapcsolatos felelősség alól, ha a nem teljesítés ellenállhatatlan erők (vis major) következménye.

X.2. Vis majornak minősül egy esemény, amely nem vezethető vissza az Eladó vagy Vevő saját hibájára vagy gondatlanságára és nem látható előre. Vis maiornak tekintik a Felek azokat az akaratukon kívül álló eseményeket, amelyek a Szerződés hatályba lépését követően álltak elő, illetve amelyek a

Szerződés hatályba lépését megelőzően álltak elő – és amelyek megakadályozzák a Szerződés teljesítését vagy további teljesítését – de következményeit a Felek nem láthatták előre. Ilyen események különösen, de nem kizárolagosan pl.: természeti/időjárási katasztrófák, tűz, árvíz, járvány, háborús és egyéb polgári/politikai konfliktus, továbbá amit a Felek közösen annak állapítanak meg, stb.

X.3. A vis major által érintett fél köteles a másik felet a vis major helyzet bekövetkezéséről, illetve megszünéséről 3 munkanapon belül értesíteni.

X.4. Ha vis maior esetén bármely Félnél érdekműlás következik be, az adott Fél jogosult a Szerződést felmondani, vagy a Szerződéstől elállni.

XI. A SZERZŐDÉS MÓDOSÍTÁSA

XI.1. A Felek rögzítik, hogy a Szerződés kizárolag a Kbt. 141. § rendelkezéseinek megfelelően írásban módosítható.

XII. KAPCSOLATTARTÁS

XII.1. Felek rögzítik, hogy minden nyilatkozatot, vagy egyéb értesítést írásban, szükség szerint levélben, e-mailben vagy telefax útján küldenek meg egymásnak. A kézbesítés időpontjának személyes kézbesítés esetén a címzett Fél általi személyes átvétel időpontját, telefax esetében a sikeres küldést igazoló adási jelentésben szereplő időpontot, ajánlott postai küldeménynél legkésőbb a postára adást követő 5. (ötödik) munkanapot, míg e-mailes értesítés esetén a címzett Fél szerverére történő megérkezés időpontját kell figyelembe venni.

XII.2. A felek közötti kapcsolattartás nyelve a magyar.

XII.3. A Felek részéről kapcsolattartásra jogosultak:

Vevő kapcsolattartójának neve, cím, elérhetőségei:

Név: Dr. Janáky Csaba
Cím: 6720 Szeged, Rerrich Béla tér 1.
Telefon: +36 62 546-393
E-mail: janaky@chem.u-szeged.hu

Név: Dr. Bencsik Gábor
Cím: 6720 Szeged, Rerrich Béla tér 1.
Telefon: +36 62 343-581
E-mail: bencsikg@chem.u-szeged.hu

Eladó kapcsolattartójának neve, cím, elérhetőségei:

Név: Maráczi László
Cím: 2091 Etyek, Temető u. 48.
Telefon: +36 30 921 5666
E-mail: laszlo.maraczi@vintech.hu

Eladó szakszervíz szervízpartnere:

Szerviz neve: Vin-Tech Európa Kft.
Székhelye: 2091 Etyek, Temető u. 48.
Levelezési címe: 2091 Etyek, Temető u. 48.
Kapcsolattartó: Maráczi László
Telefonszám: +36 30 921 5666
Email cím: laszlo.maraczi@vintech.hu

XIII. VÁLASZTOTT BÍRÓSÁG, ALKALMAZOTT JOG

XIII.1. A Szerződésből eredő jogvitákat Felek megkísérlik békés úton rendezni. A Felek megállapodnak, hogy tárgyalásainkról minden esetben jegyzőkönyvet vesznek fel, amelyet képviselőik aláírnak. Amennyiben ez 30 napon belül nem vezet eredményre, a Felek a vita elbírálása céljából alávetik magukat a Vevő székhelye szerinti magyar bíróság eljárásának. Felek kikötik, hogy az eljárás nyelve magyar és az eljárásban a magyar jogot kell alkalmazni.

XIII.2. Felek tudomásul veszik, hogy a Szerződés - a Kbt. szerinti esetleges korlátozásokkal - nyilvános, tartalma közérdekű adatnak minősül. (Kbt. 43. § (1) bekezdés d) pontja)

XIII.3. A Szerződésben nem szabályozott kérdésekben a Kbt., a Ptk., a 321/2015. (X. 30.) Korm. rendelet, valamint a 256/2021. (V. 18.) Korm. rendelet előírásai, és az egyéb vonatkozó jogszabályok az irányadók.

XIV. A SZERZŐDÉS MEGSZŰNÉSE

XIV.1. A Szerződés megszűnik:

- a) a VI.5. pont szerinti esetben,
- b) a határozott idő leteltével,
- c) a teljesítéssel,
- d) a teljesítés lehetetlenné válásával,
- e) A másik fél súlyos szerződésszegése esetén rendkívüli felmondásnak lehet helye. A Vevő, anélkül, hogy elveszítené jogát a szerződésszegés esetében őt megillető egyéb igényekre, az Eladónak megküldött írásbeli nyilatkozattal egyoldalúan, rendkívüli felmondással felmondhatja a Szerződést az Eladó kártérítése nélkül különösen:
 - Ha az Eladó – a Vevő erre vonatkozó előzetes, a következményekre történő írásbeli figyelmeztetése ellenére – nem teljesíti bármely más, szerződéses kötelezettségét,
 - Ha az Eladó felszámolási, végrehajtási, illetve végelszámolási eljárás alatt áll.
- f) a Kbt. 143. § szerinti feltételek esetén a Vevő általi felmondással/elállással,
- g) vis maior esetén bekövetkező érdekműlás bejelentésével,
- h) amennyiben az érintett projekt Irányító Hatósága a 2014-2020 programozási időszakban az egyes európai uniós alapokból származó támogatások felhasználásának rendjéről szóló 256/2021. (V. 18.) Korm. rendelet alapján szabálytalanságot állapít meg az bontó feltételnek minősül és Megrendelő jogosult a Szerződéstől elállni, vagy azonnali hatállyal felmondani a Szerződést, illetve, amennyiben a Szerződés a szabálytalanság megállapításáig még nem került megkötésre, úgy a Szerződés nem köthető meg,

XIV.2. A Vevő jogosult és egyben köteles a Szerződést felmondani – ha szükséges olyan határidővel, amely lehetővé teszi, hogy a Szerződéssel érintett feladata ellátásáról gondoskodni tudjon – ha az Eladóban közvetetten vagy közvetlenül 25%-ot meghaladó tulajdoni részesedést szerez valamely olyan jogi személy vagy személyes joga szerint jogképes szervezet, amely tekintetében fennáll a Kbt. 62. § (1) bekezdés k) pont kb) alpontról meghatározott feltétel, vagy az Eladó közvetetten vagy közvetlenül 25%-ot meghaladó tulajdoni részesedést szerez valamely olyan jogi személyben vagy személyes joga szerint jogképes szervezetben, amely tekintetében fennáll a Kbt. 62. § (1) bekezdés k) pont kb) alpontról meghatározott feltétel.

XIV.3. Vevő jogosult a Szerződés felmondani, ha Eladó nem biztosítja a Kbt. 138. §-ban foglaltak betartását, vagy az Eladó személyében érvényesen olyan jogutótlás következett be, amely nem felel meg a Kbt. 139. §-ban foglaltaknak.

XIV.4. A Vevő - a Kbt. 143. § (2) bekezdése értelmében - köteles a Szerződést felmondani, vagy - a Ptk.-ban foglaltak szerint - attól elállni, ha a Szerződés megkötését követően jut tudomására, hogy az Eladó fél tekintetében a közbeszerzési eljárás során kizártó ok állt fenn, és ezért ki kellett volna zárni a közbeszerzési eljárásból.

XIV.5. Vevő a Szerződést felmondhatja, vagy – a Ptk.-ban foglaltak szerint – a Szerződéstől elállhat,

- ha feltétlenül szükséges a Szerződés olyan lényeges módosítása, amely esetében a Kbt. 141. § alapján új közbeszerzési eljárást kell lefolytatni,
- az EUMSZ 258. cikke alapján a közbeszerzés szabályainak megszegése miatt kötelezettségszegési eljárás indult vagy az Európai Unió Bírósága az EUMSZ 258. cikke alapján indított eljárásban kimondta, hogy az Európai Unió jogából eredő valamely kötelezettség tekintetében kötelezettségszegés történt, és a bíróság által megállapított jogszertés miatt a szerződés nem semmis.

XIV.6. A Felek titoktartással, jogvitákkal és közlésekkel kapcsolatos jogai és kötelezettségei a Szerződés bármilyen okból történő megszűnését követően is fennmaradnak, és kötelező érvényűek a Felekre.

XIV.9. A Szerződés bármilyen okból történő megszűnése (meghiúsulása) esetén a Felek kötelesek haladéktalanul elszámolni egymással a Szerződésben foglaltak, illetve a Ptk. irányadó szabályai szerint.

XV. ZÁRÓ RENDELKEZÉSEK

XV.1. A Felek a Szerződés létrehozása és teljesítése kapcsán tudomásukra jutott adatokat üzleti titokként kötelesek kezelní, figyelemmel a Kbt. vonatkozó rendelkezéseiben is írtakra.

- Amennyiben a Szerződés teljesítése során a Felek minősített adatokba nyernek betekintést, vagy azok birtokába jutnak, kötelesek az információs önrögzítési jogról és az információszabadságról szóló 2011. évi CXII. törvényben foglaltaknak megfelelően eljární.
- A Felek kötelezik magukat arra, hogy védk és őrzik a Szerződés teljesítése során tudomásukra jutott adatokat, információkat, dokumentumokat, és minden erőfeszítést megtesznek annak érdekében, hogy azok megfelelő védelmet biztosítsák. Így különösen gondoskodnak arról, hogy alkalmazottai, illetve mindenek, akik a Szerződés teljesítése kapcsán bizalmas adathoz hozzáférhetnek, betartsák az adatvédelmi jogszabályok előírásait, illetve, hogy ezen adatokhoz csak azok férhessenek hozzá, akik jogosultak azok megismerésére és felhasználására. A Felek szavatolják, hogy minden alkalmazottuk, egyéb segítőjük, akik munkaköri vagy szerződéses kötelezettségek teljesítése során az adatokhoz, információhoz, dokumentumokhoz hozzá kell jussanak, vagy egyébként hozzáférhetnek, megfelelő titkosszabadságot tesznek, mielőtt a Szerződéssel kapcsolatos tevékenységüket megkezdenék, illetve az adatvédelmet megfelelően biztosítják, végrehajtják az adatvédelemhez szükséges védelmi, biztonsági intézkedéseket.
- Nem minősül üzleti titoknak az állami költségvetés felhasználásával kapcsolatos adat, valamint az az adat, amelynek megismerését vagy nyilvánosságra hozatalát külön törvény közérdekből elrendeli.
- Az Eladó tudomásul veszi, hogy az Állami Számvevőszék vizsgálhatja az államháztartás alrendszeréből finanszírozott beszerzéseket és az államháztartás alrendszerének vagyonát érintő szerződéseket a Vevőnél, valamint azoknál a szerződő feleknél, akik, illetve amelyek a Szerződés teljesítéséért felelősek, továbbá a Szerződés teljesítésében közreműködő valamennyi gázdálkodó szervezettel.
- Az Eladó tudomásul veszi, hogy a Szerződés lényeges tartalmáról szóló tájékoztatást, illetve a nyilvánosságra hozatalt a Vevő az üzleti titokra hivatkozással sem tagadhatja meg az információs önrögzítési jogról és az információszabadságról szóló 2011. évi CXII. törvény 26. § (1)

bekezdésében, 32. § rendelkezéseiben, 33. § (1) bekezdésében és az 1. mellékletének III.4. pontjában írtak alapján.

f) Eladó kifejezetten hozzájárul, hogy a Vevő a Szerződést valamint ezek mellékleteit az érintett projekttel kapcsolatos jelentéstételi kötelezettségének teljesítése, illetve az elszámolás során bemutassa, szükség esetén az általa benyújtandó iratokhoz csatolja.

XV.2. A Felek felelősséggel tartoznak minden olyan kárért, amely a XIV.1. pontban körülírt, illetve a Szerződés teljesítéséből eredő adatkezelési, titoktartási kötelezettségük megszegéséből származik.

XV.3. Az Eladó az államháztartásról szóló törvény végrehajtásáról szóló 368/2011. (XII. 31.) Korm. rendelet 50. § (1a) bekezdésének megfelelően a Szerződés aláírásával egyidejűleg nyilatkozik, hogy a nemzeti vagyonról szóló 2011.évi CXCVI. törvény 3. § (1) bekezdésének 1. pontja szerinti átlátható szervezetnek minősül.

XV.4. A Felek kötelesek egymással együttműködni és egymást a Szerződést érintő kérdésekről a lehető leghamarabb tájékoztatni.

XV.5. A Felek titoktartással, jogvitákkal és közlésekkel kapcsolatos jogai és kötelezettségei a Szerződés bármilyen okból történő megszünését követően is fennmaradnak, és kötelező érvényűek a Felekre.

XV.6. A Felek a Szerződést annak áttanulmányozása és értelmezése után, mint akaratukkal mindenben megegyezőt, az alulírott helyen és időben jóváhagyólag összesen 4 eredeti példányban írják alá, amelyből 3 Vevőt, 1 példány azt Eladót illeti meg.

Melléklet:

1. sz. melléklet: Műszaki leírás

Vevő részéről:

Kelt: Szeged, 2023. 03. 24.

Prof. Dr. Rovó László, rektor

Dr. Fendler Judit, kancellár

Pénzügyi ellenjegyző:

Tácsi Ildikó, GF főigazgató

Eladó részéről:

Kelt: Etel, 2023. 09. 09.

VIN-TECH
EURÓPA KFT.
Maráczi László, ügyvezető 1. Etterem, Támető utca 48.
ADÓSZÁM: 84942940-2-07

Maráczi László, meghatalmazott
Vinci Technologies S.A.

Jogi ellenjegyzés:

Dr. Nagy Paulina
beszerzési igazgató

1st Reactor train: RWGS + Fischer-Tropsch
2nd Reactor train: FT + CO₂ Hydrogenation

15 december 2022

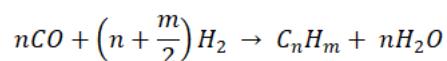
1. MULTIREACTOR UNIT FOR FT REACTIONS & RWGS	3
1.1. INTRODUCTION	3
1.2. PROCESS GENERALITIES ABOUT FISCHER-TROPSCH SYNTHESIS REACTION	3
1.2.1. <i>Exothermic reactions</i>	4
1.2.2. <i>Large hydrocarbon distribution</i>	4
1.2.3. <i>Catalyst</i>	4
1.2.4. <i>HTFT reaction conditions</i>	5
1.3. 1 ST REACTORS TRAIN - TECHNICAL SPECIFICATIONS	6
1.4. MULTIREACTOR PILOT PLANT / FEED SECTION	7
1.4.1. <i>Gas feed module</i>	7
1.4.1.1. <i>Effluent recirculation module - gas booster</i>	8
1.5. PILOT PLANT / REACTION SECTION	8
1.6. SEPARATION – PRODUCT RECOVERY SECTION	11
1.6.1. <i>Fischer- Tropsch reactor Product separation</i>	11
1.6.2. <i>High boiling point products (waxes and assimilated)</i>	11
1.6.3. <i>RWGS reactor Product Separation</i>	13
1.6.3.1. <i>RWGS gas effluent compression module</i>	16
1.7. 2 ND REACTORS TRAIN - TECHNICAL SPECIFICATIONS	17
1.8. MULTIREACTOR PILOT PLANT / FEED SECTION	18
1.8.1. <i>Gas feed module</i>	18
1.8.1.1. <i>Effluent recirculation module - gas booster</i>	19
1.9. PILOT PLANT / REACTION SECTION	19
1.10. SEPARATION – PRODUCT RECOVERY SECTION	21
1.10.1. <i>Fischer- Tropsch reactor Product separation</i>	22
1.10.2. <i>High boiling point products (waxes and assimilated)</i>	22
1.10.3. <i>CO₂ Hydrogenation reactor Product Separation</i>	24
1.10.4. <i>Vent header</i>	26
1.11. MATERIALS AND FABRICATION SPECIFICATIONS	28
1.11.1. <i>General</i>	28
1.11.2. <i>Equipment</i>	28
1.11.3. <i>Materials of Construction</i>	28
1.11.4. <i>Spare Parts</i>	28
1.11.5. <i>On site implantation</i>	28
1.12. UTILITIES	28
1.13. CONTROL SYSTEM	30
1.13.1. <i>Workstation hardware</i>	30
1.13.2. <i>Workstation software</i>	30
1.13.3. <i>Control cabinet interface</i>	31
1.14. SAFETY	32
1.15. ELECTRICAL SPECIFICATIONS	34
1.15.1. <i>Electrical classification</i>	34
1.15.2. <i>Electrical specifications</i>	34
1.16. SUPERVISION EXAMPLES	35
1.16.1. <i>Unit Overview</i>	35
1.16.2. <i>Set point details</i>	36
1.16.3. <i>Historical display (pressures)</i>	36
1.16.4. <i>Admin menu</i>	37
1.16.5. <i>Sampling menu</i>	37
1.16.6. <i>Temperature Ramp</i>	38
1.16.7. <i>Reactor Rx-1400 display</i>	38
1.16.8. <i>Historical display</i>	39

1. MULTIREACTOR UNIT FOR FT REACTIONS & RWGS

1.1. INTRODUCTION

Vinci-Technologies is pleased to introduce this proposal regarding a multireactor pilot unit for performing **GTL reaction: Fischer-Tropsch, CO₂ hydrogenation, etc.**, to convert **Synthesis Gas (or assimilated)** into a mix of hydrocarbons or Chemicals. This pilot plant has been designed to study, on a turnkey basis, catalyst evaluation, product development and process variables (pressure, temperature, gHSV, etc..), according to high quality level state of the art.

The unit is designed to be fed by hydrogen / carbon monoxide / carbon dioxide mixture and is fitted with a fixed-bed reactor (volume of about 500ml), with the purpose of demonstrating **the ability to produce liquid fuel or liquid chemical from gas**. Pilot plant allows also testing the **activity, selectivity and stability of Fischer-Tropsch catalyst**. F-T Pilot plant is designed to perform **High temperature Fischer-Tropsch reaction (HTFT)** showing high yield for gasoline production (carbon chain length from C₅ to C₁₂) as well as **Low temperature Fischer-Tropsch reaction (LTFT)** showing high yield for waxes production (carbon chain length from C₂₀).


The unit is designed in order to be installed in a **general purpose area** (non-explosion proof area). Vinci-Technologies proposal includes all engineering, control system design, procurement, and fabrication activities to complete the unit as described herein. The unit is fully assembled, mechanically tested, and run through a factory acceptance protocol at Vinci-Technologies facility in France. The unit will be designed and engineered by Vinci-Technologies. Upon Client acceptance, the unit will be prepared for shipment to client's facility. Commissioning and start-up of the unit at client's facility will be completed by Vinci-Technologies engineers.

The multi-reactor pilot plant is manufactured on a modular skid made of welded carbon steel frame showing mechanical resistance combined with aluminum profile for lightness and versatility. This modular skid will be fitted in a 30 ft long shipping container with double door for easy access to both: reaction side and compressor side (both side will be separated by light wall and access door).

1.2. PROCESS GENERALITIES ABOUT FISCHER-TROPSCH SYNTHESIS REACTION

Two main characteristics of Fischer-Tropsch synthesis (FTS) is the production of a wide range of hydrocarbon products (mainly paraffins, but also olefins, napthenes and oxygenates, depending on the catalyst nature and operating temperature) and the liberation of a large amount of heat from the highly exothermic synthesis reactions. Note also that water is produced in equimolar amount as hydrocarbons.

The FT synthesis is a carbon chain building process, where -CH₂- group is the base of the carbon chain. Which reactions exactly taking place and how, is a matter of controversy, as it has been the last century since 1930's. The resulting overall reaction can be presented as follows:

Exothermic reactions

There is also other reactions taking place in the reactor, but the detailed behaviour of the reactions is not known and is a theme of controversy. The reactions reported are:

Reaction :	Reaction enthalpy : ΔH_{300K} (kJ/mol)
$CO + 2 H_2 \rightarrow -CH_2- + H_2O$	-165.0
$2 CO + H_2 \rightarrow -CH_2- + CO_2$	-204.7
$CO + H_2O \rightarrow H_2 + CO_2$	-39.8
$3 CO + H_2 \rightarrow -CH_2- + 2 CO_2$	-244.5
$CO_2 + 3 H_2 \rightarrow -CH_2- + 2 H_2O$	-125.2

Table 1. Set of reaction occurring during the Fischer-Tropsch synthesis

These reactions are highly exothermic. So to avoid a temperature increasing, leading to undesired hydrocarbons production (such as methane), it is primordial to get an efficient control and regulation of the reactor temperature, to secure stable and isothermal reaction conditions.

1.2.1. Large hydrocarbon distribution

Two examples of product distributions are given below, first with iron based catalyst and second with cobalt based catalyst. Experiments have been carried out at the Technical University of Vienna. The reactions take place in a bench scale FT reactor (~250 ml reactor volume). The x-axis indicates the chain length as a function of C number of the chain, while the y-axis shows the percentage on weight basis.

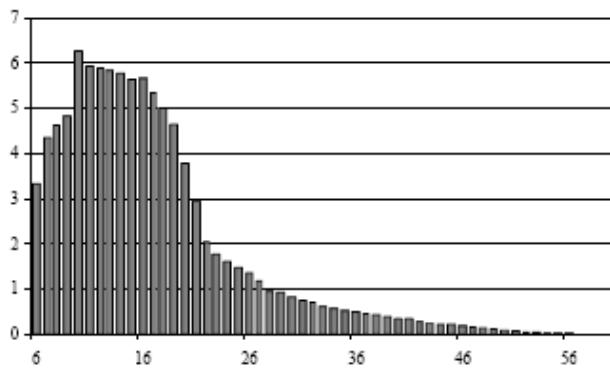


Figure 1. Product distribution with iron based catalyst

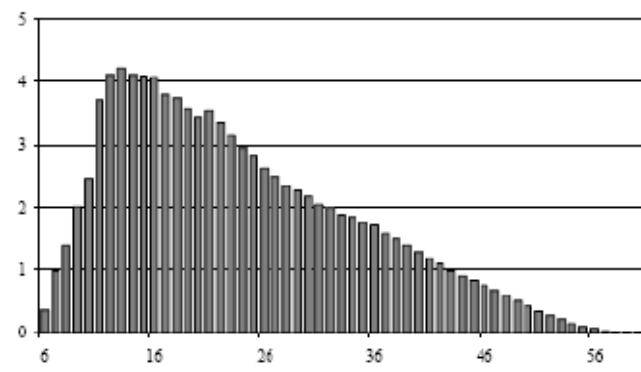


Figure 2. Product distribution with cobalt based catalyst

Reactions with iron based catalyst were conducted at 30 bars and 280 °C. Iron catalyst shows a high selectivity in the important interval between C₆ –C₁₈, which means a high yield of gasoline and diesel fuel. Whereas cobalt based catalyst provides a higher growth probability, as heavier hydrocarbons are produced. The reaction conditions were 30 bar and 240 °C.

High temperature Fischer-Tropsch

1.2.2. Catalyst

When using Fe based catalysts for Fischer-Tropsch reaction, the CO₂ content in syngas does not have any adverse effect on catalyst activity, since Fe is active both in the metallic and in the oxide phases (even carbide). Furthermore, Fe has a good activity for the reverse shift reaction. Thus, additional CO will be produced and H₂/CO ratio lower than 2 can be used. No synthesis gas purification is required before Fischer-Tropsch synthesis.

Cobalt based catalysts exhibit a lower activity for the reverse shift reaction and CO₂ can be considered as an inert for the Fischer-Tropsch reaction. However, when the CO₂ concentration in syngas exceeds 12 vol. %, Co may be partially oxidized which entails a drastic drop of the catalytic activity (Co is active as a metal, not as an oxide). CO₂ content in the syngas in the 3 – 8 vol. % range can be considered as safe, since there is no recycling of unconverted natural gas in the Fischer-Tropsch reactor.

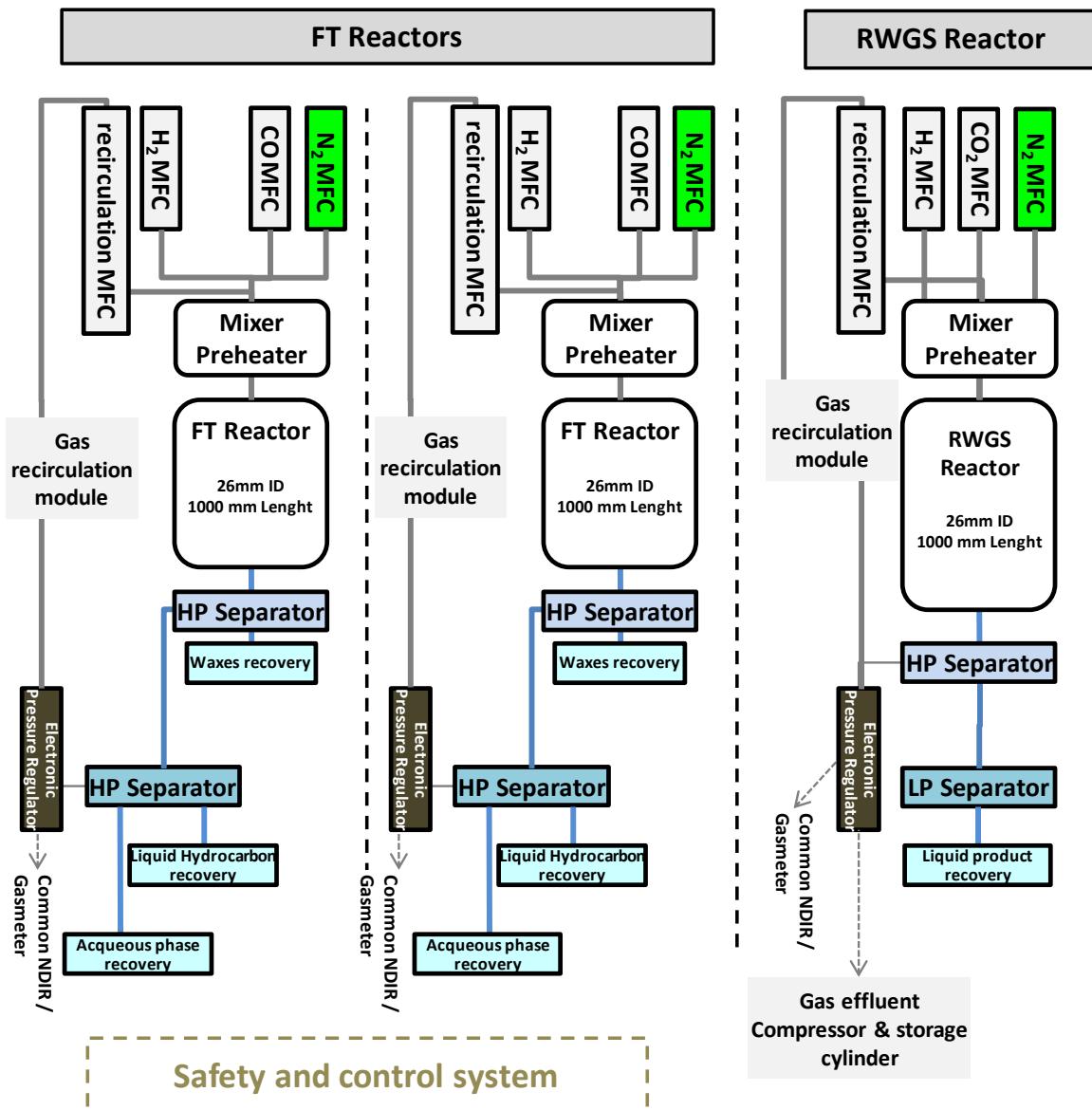
This is since:

- amine scrubbing and regeneration is quite expensive (contercurrent adsorption column under pressure, regeneration) while we believe that the CO₂ content in the dry syngas may be maintained

below 10 mol% by selecting adequate operating conditions, without significant impact of Co-based catalysts, with no impact on Fe-based catalysts,

- absorption by NaOH leads to high flow-rates (>50l/hr) of concentrated alkali solutions (>1 mol/L), with large tank volumes and corresponding hazards for the client operators

1.2.3. HTFT reaction conditions


Pilot plant is devoted to HTFT reaction in order to promote **gasoline** range hydrocarbon production. We recommend an operating of about 30 barg and a temperature in a 280-350 °C range.

Operating Conditions	HTFT
Pressure (barg)	30
Temperature (°C)	280-350
GHSV (h ⁻¹)	2000-3000
Catalyst	Iron based

For operating pressures higher than 35 - 40 bar, selectivity towards olefins and alcohols becomes significant, especially using supported Co as catalyst, which is quite sensitive to pressure. CuCo based catalysts for alcohol syntheses are operated at 60 bars at same temperature and space velocities as FT catalysts.

1.3. 1ST REACTORS TRAIN - TECHNICAL SPECIFICATIONS

As represented on the scheme below:

Figure 3. Process diagram of the proposed Multireactor unit

The unit is composed by **3 reactors**, **2 devoted for Fischer-Tropsch reactor** and **1 devoted to RWGS Reverse Water Gas shift**. Each reactor train could be briefly described as

- **A gas feed system**, provided with a gas lines.
- **A reaction section**, provided with a preheater and a reactor/furnace module.
- **A let-down system**, provided with a high pressure separator, a gas counting system and a product recovery module.
- **A gas effluent recirculation module**
- RWGS reactor will be fitted with a **gas effluent compressor** and a **cylinder for storage** purpose.

The unit is designed in order to be installed in a general purpose area.

1.4. MULTIREACTOR PILOT PLANT / FEED SECTION

1.4.1. Gas feed module

Pilot plant will be provided with:

- **high pressure Hydrogen**
- **high pressure Carbon monoxide** (for the 2 FT reactors only)
- **high pressure Carbon dioxide** (for the RWGS reactor)
- **High pressure Nitrogen**
- **High pressure gas effluent recirculation**

Each gas line will be equipped as follow:

- Manual isolation valve
- Filter
- Pneumatic valve
- Pressure reducer with manometers
- Flow-meter/flow controller
- Manual isolation valve
- Check valve

High pressure gases are either fed from cylinder, central supply or compressor (not included in Vinci Technologies scope). Flow and mixture composition are accurately regulated by using independent thermal mass flow controller. The system is designed to operate in pressure control mode.

HP H ₂ Line	quantity	3
	Hydrogen Maximum Flow	800 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP CO Line	quantity	2 (FT reactors only)
	CO Maximum Flow	400 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP CO ₂ Line	quantity	1 (RWGS)
	CO ₂ Maximum Flow	200 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP N ₂ Line	quantity	3
	N ₂ Maximum Flow	300 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale

*Flow rate could adjusted to meet customer requirement

Figure 4. Gas feed line example

1.4.1.1. Effluent recirculation module - gas booster

Gas booster is proposed with a separate skid hosting an air driven compressor in order to increase the effluent pressure of about 10barg to overcome pressure drop of mass flow control driving the recirculation. The gas compressor skid is equipped with all necessary instrument for its operation: an air driven booster, a heat exchanger (double jacket fed with air), pressure gauge, pressure safety valves, manual valves, piping and tubing.

Recirculation Compressor module	Quantity	3
	Effluent Max. flow rate	To be discussed
	Maximum Discharge pressure	110 barg
	Inlet effluent pressure	10 barg lower than discharge pressure
	specificity	Air driven compressor

Gas effluent recirculation Line	quantity	3
	Hydrogen Maximum Flow	800 NL/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale

*Flow rate could adjusted to meet customer requirement

1.5. PILOT PLANT / REACTION SECTION

Reaction section of each reactor train is composed by a preheater (Ph-300), a reactor (rx-300) and his corresponding furnace (F-300).

The reaction section of the pilot plant will be running in two different modes:

- **Catalyst activation** by reduction under hydrogen (or hydrogen/nitrogen) atmosphere (step 1)
- **Fischer-Tropsch synthesis** reaction with syngas coming from the reforming plant (step 2)

The preheater Ph-300 is especially designed to increase syngas temperature to reactor temperature (about 250-300°C) in order to help furnace F-300 to show a flat temperature profile. The preheater can be assimilated to a small furnace localized upstream the reactor Rx-300.

Preheater Ph-300	quantity	3
	Material	SS 316 L
	Design pressure	120 bar
	Operating pressure	0-100 barg
	Design temperature	400°C

	Operating temperature	Up to 350°C
	Operating mode	Isothermal
	Specificity	Electric heating

In order to operate reactor in a wide range of conditions, the maximum operating pressure of the reactor has been set to 100 barg but typical operating conditions will be **30 barg** and **200° to 350°C** to perform High and Low temperature FT synthesis reaction.

Reactor is design in compliance with pilot plant reactor general designing rule in order to allow gathering industrial representative data with industrial shaped catalyst (catalyst particle size of 2-3 mm diameter, 3-4 mm length extrudates)

Reactor	quantity	2
	Reactor total volume	≈0.35l
	Operating mode	Isothermal & down flow
	Design Temperature	750°C
	Design Pressure	120 barg
	Maximum Operating Temperature	650°C at atm pressure
	Maximum Operating Pressure	100 barg at 450°C
	Material of construction	Stainless steel SS316
	Inner diameter & Length	≈20 mm & 1000 mm

Reactor devoted for RWGS operation will be designed to reach higher temperature of operation at atmospheric pressure.

RWGS Reactor	quantity	1
	Reactor total volume	≈0.35l
	Operating mode	Isothermal & down flow
	Design Temperature	900°C
	Design Pressure	120 barg@ 450°C
	Maximum Operating Temperature	850°C at atm pressure
	Maximum Operating Pressure	100 barg at 450°C
	Material of construction	Stainless steel SS316 ro higher grade
	Inner diameter & Length	≈20 mm & 1000 mm

The reactor height/diameter ratio is chosen to be high in order to have a significant heat transfer and so a better temperature control. Catalyst will be maintains to the isothermal part of the reactor by filling top and bottom parts with inert particles (such as silicon carbide).

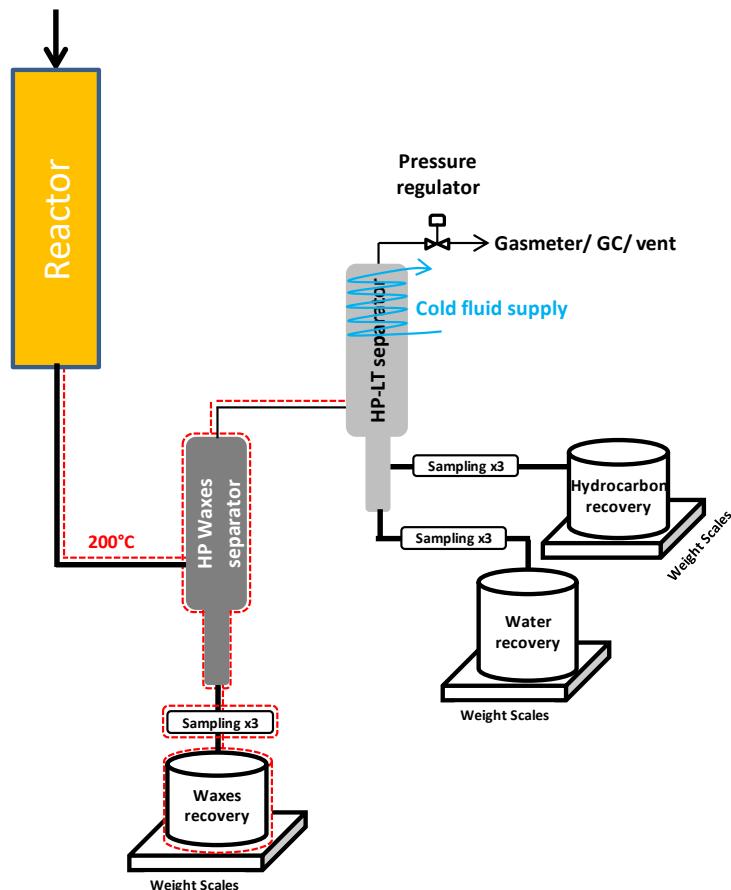
The reactors are a Vinci-Technologies design, tubular fixed-bed type. Reactors handling is very simple and user-friendly equipped with specific fittings and gaskets for high pressure operation. This design allows an easy handling of the reactor helping the catalyst loading and unloading procedure.

Catalyst bed temperature is monitored and controlled with a 6.35 mm thermowell placed inside the reactor. Thermowell is provided with 5 type K thermocouples allowing a temperature profiling all along the reactor

The heaters are isothermal split tube furnaces. They consist of five independent heating zones for a flat isothermal profile along the reactor height. The heating zones are controlled through PID temperature controllers. For each heating zone, two thermocouples are supplied, one devoted to temperature safety, the other one for skin measurements. The design of these furnaces answers the art of state in terms of ergonomics: these cylinder section furnaces will be composed by two half, closed during operations by a pair of latches. Metrology studies performed at temperatures close to the proposed design, i.e. 450°C, indicate that the temperature deviation from one reactor to another is less than 1.0°C.

**Figure 5. Furnace and reactor module
(100 cm height)**

Furnace F-400	quantity	3
	Furnace type	Isothermal split tube furnace
	Number of independent heated zones	5
	Diameter (Internal ID, External OD)	1.0" element ID with 8" OD
	Height of unitary heating zone	200mm
	Total heated height	1000mm
Thermowell	quantity	3
	External diameter	6.35 mm
	Number of thermocouples / diameter	5 items & 0.5 mm diameter
Pressure transmitter	quantity	3
	Range	0-150 barg
Safety	quantity	3
	Type	Pressure safety valve
	Set point	110 barg
Valves and fittings	Material of construction	SS 316 (High temperature valves)


For safety issue the reaction section is provided, reactor upstream, with a pressure safety valve set at 110 barg (100 operation +10% = 110barg).

1.6. SEPARATION – PRODUCT RECOVERY SECTION

1.6.1. Fischer- Tropsch reactor Product separation

Product separation section for FT reactor train is described by below scheme

Figure 6. Schematic representation of the separation section

1.6.2. High boiling point products (waxes and assimilated)

The outlet effluent from the reactor is routed to the primary high pressure separator for efficient gas/liquid separation. The separator is specifically designed for efficient disengagement of the gas phase while minimizing the entrainment of liquid particles. This separator is operated at 200°C to separate high boiling point product: **waxes and assimilated showing high viscosity** and gaseous product. Temperature is monitored and accurately regulated via an electrical heating showing fast response time.

1st High Pressure separator	quantity	2
	Material	SS 316 L
	Design pressure	120 barg
	Max Operating pressure	100 barg
	Design temperature	350°C
	Max Operating temperature	200°C
	Liquid phase volume	20cm ³
	Separator total volume	80cm ³

The liquid phase is continuously recovered at the bottom of the 1st HP separator under level control. Separator is equipped with a liquid level probe. Liquid level control is achieved using an automatic on/off valve placed on the liquid line. High boiling point product recovered is routed to a vessel installed on weight scales to complete mass balance (weighing data being monitored and stored by control system/software). In addition before reaching the recovery vessel high boiling point product phase could be sampled (to follow reaction advancement) by the help of 3 vials

Recovery vessel High boiling point product (waxes)	quantity	2
	Capacity	2 liters
	Material	Borosilicated Glass
Weight scales High boiling point product	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Liquid sampling High boiling point product	quantity	2
	Range	0-6000 g
	Readability	0.1 g
Liquid sampling High boiling point product	quantity	2
	Vials volume	50cm ³
	Vials number	3

HP-LT separator is specifically designed for three phase separation (separation of gas & low boiling point product: water and hydrocarbon phase). To improve efficiency, separation temperature is controlled via a double jacket fed with chilled fluid supply from a chiller (not included in Vinci's scope).

HP-LT separator 3 phases separator	quantity	2
	Material	SS 316 L
	Design pressure	120barg
	Operating pressure	100barg
	Design temperature	200°C
	Operating temperature	Room temp. top cooled by chilled water
	Liquid phases volume	20cm ³
	Separator total volume	80cm ³
	Specificity	Double jacketed 2 liquid phases separation

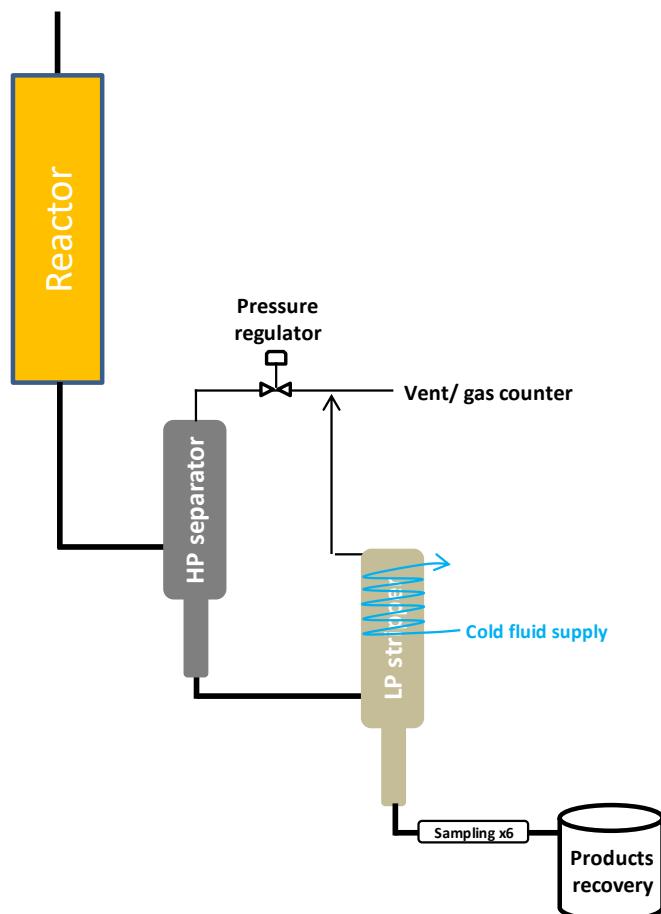
Both liquid phases recovered from the LP separator: water and hydrocarbons are sent to sampling systems and specific recovery vessels.

Recovery vessel Water	quantity	2
	Capacity	2 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales Water	quantity	2
	Range	0-6000 g
	Readability	0.1 g

Liquid sampling Water	quantity	2
	Vials volume	50cm ³
	Vials number	2

Recovery vessel Hydrocarbon	quantity	2
	Capacity	1 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales hydrocarbon	quantity	2
	Range	0-6000 g
	Readibility	0.1 g
Liquid sampling hydrocarbon	quantity	2
	Vials volume	50cm ³
	Vials number	3

The gas phase recovered at the top of the HP separator first goes through an **electronic back pressure regulator** to control reactor pressure and reduce effluent pressure in order to increase separation efficiency.


Back Pressure Regulator	quantity	2
	Body materials	SS316
	Design Temp.	70°C
	Operating temperature	Room temp.
	Max Regulating pressure	100barg
	specificity	Electronic regulation

The gas phase is then sent for counting to the wet gas meter, equipped with a thermocouple and a pressure transmitter for correction of the gas flow. This allows an accurate mass balance of the unit. The gas can be sent automatically to a **GC analyzer** (not included in Vinci's scope) for on line analysis.

Gas meter	quantity	2
	Maximum flowrate	500 l/h
	Design temperature	50°C
	Design pressure	0.05 barg (overpressure protected)

1.6.3. RWGS reactor Product Separation

Product separation section for RWGS reactor train is described by below scheme

Figure 7. Schematic representation of the separation section

The outlet effluent from the reactor is routed to a high pressure separator for efficient gas/liquid separation. The separator is specifically designed for efficient disengagement of the gas phase while minimizing the entrainment of liquid particles. This separator is operated at room temperature.

High Pressure separator	quantity	1
	Material	SS 316 L
	Design pressure	120 barg
	Max Operating pressure	100 barg
	Design temperature	200°C
	Operating temperature	Room Temp.
	Liquid phase volume	20cm ³
	Separator total volume	80cm ³

The liquid phase is continuously recovered at the bottom of the HP separator under level control and sent to LP gas/liquid separator. HP Separator is equipped with a liquid level probe and liquid level control is achieved using an automatic on/off valve placed on the liquid line.

LP separator is specifically designed for low pressure gas & liquid products separation phase separation. To improve efficiency, separation temperature is controlled via a double jacket fed with chilled fluid supply from a chiller.

LP separator	quantity	1
	Material	SS 316 L
	Design pressure	10barg
	Operating pressure	Up to 5barg

Design temperature	200°C
Operating temperature	Room temp. top cooled by chilled fluid
Liquid phases volume	20cm ³
Separator total volume	80cm ³
Specificity	Double jacketed

A common Thermostatic Bath located on pilot plant skid will be connected to each LP separators

Chiller	Quantity	1
	Brand & Model	Lauda & UC2
	Regulating temp.	-5 to room temp.
	Cooling power	2.5kW@15°C – 1.5kW@0°C
	Pump performance	3.4barg – 5.6l/min
	Cooling fluid volume	19liters

Liquid phase recovered from the LP separator is sent to a sampling system and specific recovery vessel.

Recovery vessel	quantity	1
	Capacity	1 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales	quantity	1
	Range	0-3500 g
	Readibility	0.1 g
Liquid sampling	quantity	1
	Vials volume	50cm ³
	Vials number	6

The gas phase recovered at the top of the HP separator first goes through an **electronic back pressure regulator** before being combined with gas effluent recovered from LP separator. Back pressure regulator allow a fine control of reactor operating pressure.

Back Pressure Regulator	quantity	1
	Body materials	SS316
	Design Temp.	70°C
	Operating temperature	Room temp.
	Max Regulating pressure	100barg
	specificity	Electronic regulation

The gas phase is then sent for counting to the wet gas meter, equipped with a thermocouple and a pressure transmitter for correction of the gas flow. This allows an accurate mass balance of the unit. The gas can be sent automatically to a **GC analyzer** (not included in Vinci's scope) for on line analysis.

Gas meter	quantity	1
	Maximum flowrate	500 l/h
	Design temperature	50°C
	Design pressure	0.05 barg (overpressure protected)

Composition of exhaust effluent (CO, CO₂ & H₂ concentration) will be monitored on real-time basis by the helps of a NDIR spectrometer (common for all 5 reactors - selection of reactor to be analyzed done via HMI)

1.6.3.1. RWGS gas effluent compression module

Gas phase effluent for RWGS reactor will be compressed thanks to a air driven gas compressor before being injected into a gas cylinder for storage purpose (volume to be discussed in the 5-10 liters range).

Gas effluent Compression module	Quantity	1
	Effluent Max. flow rate	To be discussed
	Maximum Discharge pressure	110 barg
	Inlet effluent pressure	10 barg lower than discharge pressure
	specificity	Air driven compressor

1.7. 2ND REACTORS TRAIN - TECHNICAL SPECIFICATIONS

As represented on the scheme below:

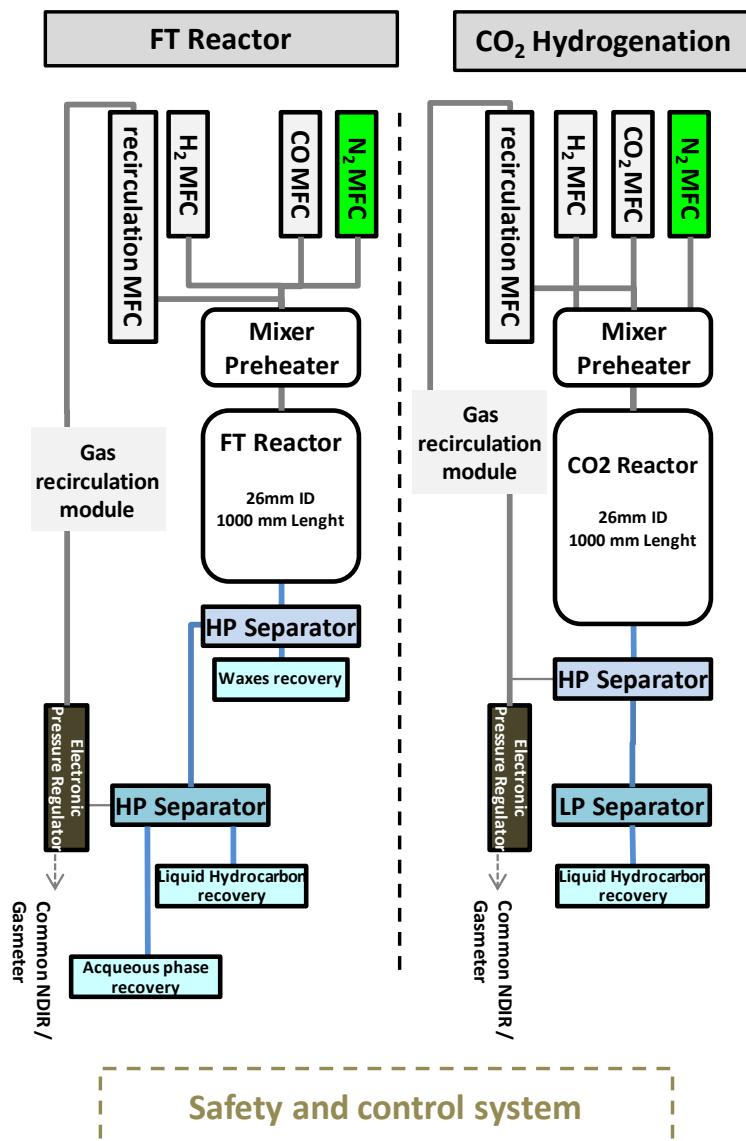


Figure 8. Process diagram of the proposed Multireactor unit

The unit is composed by 2 reactors, 1 devoted for Fischer-Tropsch reactor and 1 devoted to CO₂ hydrogenation investigation. Each reactor train could be briefly described as

- A **gas feed system**, provided with a gas lines.
- A **reaction section**, provided with a preheater and a reactor/furnace module.
- A **let-down system**, provided with a high pressure separator, a gas counting system and a product recovery module.
- A **gas effluent recirculation module**

The unit is designed in order to be installed in a general purpose area.

1.8. MULTIREACTOR PILOT PLANT / FEED SECTION

1.8.1. Gas feed module

Pilot plant will be provided with:

- **high pressure Hydrogen**
- **high pressure Carbon monoxide** (for the FT reactors only)
- **high pressure Carbon dioxide** (for the CO2 hydrogenation)
- **High pressure Nitrogen**
- **High pressure gas effluent recirculation**

Each gas line will be equipped as follow:

- Manual isolation valve
- Filter
- Pneumatic valve
- Pressure reducer with manometers
- Flow-meter/flow controller
- Manual isolation valve
- Check valve

High pressure gases are either fed from cylinder, central supply or compressor (not included in Vinci Technologies scope). Flow and mixture composition are accurately regulated by using independent thermal mass flow controller . The system is designed to operate in pressure control mode.

HP H ₂ Line	quantity	2
	Hydrogen Maximum Flow	800 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP CO Line	quantity	1 (FT reactor only)
	CO Maximum Flow	400 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP CO ₂ Line	quantity	1 (for CO ₂ Hydrogenation)
	CO ₂ Maximum Flow	200 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale
HP N ₂ Line	quantity	2
	N ₂ Maximum Flow	300 Nl/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale

*Flow rate could adjusted to meet customer requirement

Figure 9. Gas feed line example

1.8.1.1. Effluent recirculation module - gas booster

Gas booster is proposed with a separate skid hosting an air driven compressor in order to increase the effluent pressure of about 10barg to overcome pressure drop of mass flow control driving the recirculation. The gas compressor skid is equipped with all necessary instrument for its operation: an air driven booster, a heat exchanger (double jacket fed with air), pressure gauge, pressure safety valves, manual valves, piping and tubing.

Recirculation Compressor module	Quantity	2
	Effluent Max. flow rate	To be discussed
	Maximum Discharge pressure	110 barg
	Inlet effluent pressure	10 barg lower than discharge pressure
	specificity	Air driven compressor

Gas effluent recirculation Line	quantity	2
	Hydrogen Maximum Flow	800 NL/hr*
	Maximum pressure at battery limit	110 barg
	Quantity of thermal MFC	1
	Flow measurement accuracy	1% of the full scale

*Flow rate could adjusted to meet customer requirement

1.9. PILOT PLANT / REACTION SECTION

Reaction section of each reactor train is composed by a preheater (Ph-300), a reactor (rx-300) and his corresponding furnace (F-300).

The reaction section of the pilot plant will be running in two different modes:

- **Catalyst activation** by reduction under hydrogen (or hydrogen/nitrogen) atmosphere (step 1)
- **Fischer-Tropsch synthesis** reaction with syngas coming from the reforming plant (step 2)

The preheater Ph-300 is especially designed to increase syngas temperature to reactor temperature (about 250-300°C) in order to help furnace F-300 to show a flat temperature profile. The preheater can be assimilated to a small furnace localized upstream the reactor Rx-300.

Preheater Ph-300	quantity	2
	Material	SS 316 L
	Design pressure	120 bar

Operating pressure	0-100 barg
Design temperature	400°C
Operating temperature	Up to 350°C
Operating mode	Isothermal
Specificity	Electric heating

In order to operate reactor in a wide range of conditions, the maximum operating pressure of the reactor has been set to 100 barg but typical operating conditions will be **30 barg** and **200° to 350°C** to perform High and Low temperature FT synthesis reaction.

Reactor is design in compliance with pilot plant reactor general designing rule in order to allow gathering industrial representative data with industrial shaped catalyst (catalyst particle size of 2-3 mm diameter, 3-4 mm length extrudates)

Reactor	quantity	2
	Reactor total volume	≈0.35l
	Operating mode	Isothermal & down flow
	Design Temperature	750°C
	Design Pressure	120 barg
	Maximum Operating Temperature	650°C at atm pressure
	Maximum Operating Pressure	100 barg at 450°C
	Material of construction	Stainless steel SS316
	Inner diameter & Length	≈20 mm & 1000 mm

The reactor height/diameter ratio is chosen to be high in order to have a significant heat transfer and so a better temperature control. Catalyst will be maintains to the isothermal part of the reactor by filling top and bottom parts with inert particles (such as silicon carbide).

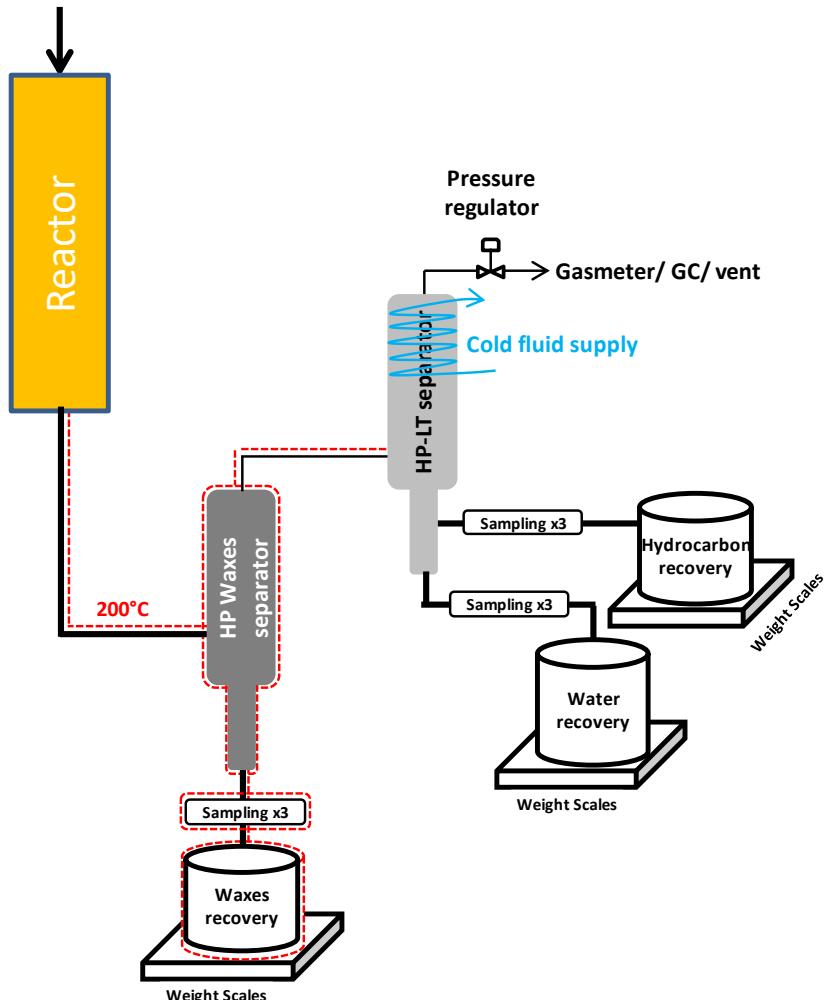
The reactors are a Vinci-Technologies design, tubular fixed-bed type. Reactors handling is very simple and user-friendly equipped with specific fittings and gaskets for high pressure operation. This design allows an easy handling of the reactor helping the catalyst loading and unloading procedure.

Catalyst bed temperature is monitored and controlled with a 6.35 mm thermowell placed inside the reactor. Thermowell is provided with 5 type K thermocouples allowing a temperature profiling all along the reactor

The heaters are isothermal split tube furnaces. They consist of five independent heating zones for a flat isothermal profile along the reactor height. The heating zones are controlled through PID temperature controllers. For each heating zone, two thermocouples are supplied, one devoted to temperature safety, the other one for skin measurements. The design of these furnaces answers the art of state in terms of ergonomics: these cylinder section furnaces will be composed by two half, closed during operations by a pair of latches. Metrology studies performed at temperatures close to the proposed design, i.e. 450°C, indicate that the temperature deviation from one reactor to another is less than 1.0°C.

**Figure 10. Furnace and reactor module
(100 cm height)**

Furnace F-400	quantity	2
	Furnace type	Isothermal split tube furnace
	Number of independent heated zones	5
	Diameter (Internal ID, External OD)	1.0" element ID with 8" OD
	Height of unitary heating zone	200mm
	Total heated height	1000mm
Thermowell	quantity	2
	External diameter	6.35 mm
	Number of thermocouples / diameter	5 items & 0.5 mm diameter
Pressure transmitter	quantity	2
	Range	0-150 barg
Safety	quantity	2
	Type	Pressure safety valve
	Set point	110 barg
Valves and fittings	Material of construction	SS 316 (High temperature valves)


For safety issue the reaction section is provided, reactor upstream, with a pressure safety valve set at 110 barg (100 operation +10% = 110barg).

1.10. SEPARATION – PRODUCT RECOVERY SECTION

1.10.1. Fischer- Tropsch reactor Product separation

Product separation section for FT reactor train is described by below scheme

Figure 11. Schematic representation of the separation section

1.10.2. High boiling point products (waxes and assimilated)

The outlet effluent from the reactor is routed to the primary high pressure separator for efficient gas/liquid separation. The separator is specifically designed for efficient disengagement of the gas phase while minimizing the entrainment of liquid particles. This separator is operated at 200°C to separate high boiling point product: **waxes and assimilated showing high viscosity** and gaseous product. Temperature is monitored and accurately regulated via an electrical heating showing fast response time.

1 st High Pressure separator	quantity	1
	Material	SS 316 L
	Design pressure	120 barg
	Max Operating pressure	100 barg
	Design temperature	350°C
	Max Operating temperature	200°C
	Liquid phase volume	20cm ³
	Separator total volume	80cm ³

The liquid phase is continuously recovered at the bottom of the 1st HP separator under level control. Separator is equipped with a liquid level probe. Liquid level control is achieved using an automatic on/off

valve placed on the liquid line. High boiling point product recovered is routed to a vessel installed on weight scales to complete mass balance (weighing data being monitored and stored by control system/software). In addition before reaching the recovery vessel high boiling point product phase could be sampled (to follow reaction advancement) by the help of 3 vials

Recovery vessel High boiling point product (waxes)	quantity	1
	Capacity	2 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales High boiling point product	quantity	1
	Range	0-6000 g
	Readability	0.1 g
Liquid sampling High boiling point product	quantity	1
	Vials volume	50cm ³
	Vials number	3

HP-LT separator is specifically designed for three phase separation (separation of gas & low boiling point product: water and hydrocarbon phase). To improve efficiency, separation temperature is controlled via a double jacket fed with chilled fluid supply from a chiller (not included in Vinci's scope).

HP-LT separator 3 phases separator	quantity	1
	Material	SS 316 L
	Design pressure	120barg
	Operating pressure	100barg
	Design temperature	200°C
	Operating temperature	Room temp. top cooled by chilled water
	Liquid phases volume	20cm ³
	Separator total volume	80cm ³
	Specificity	Double jacketed 2 liquid phases separation

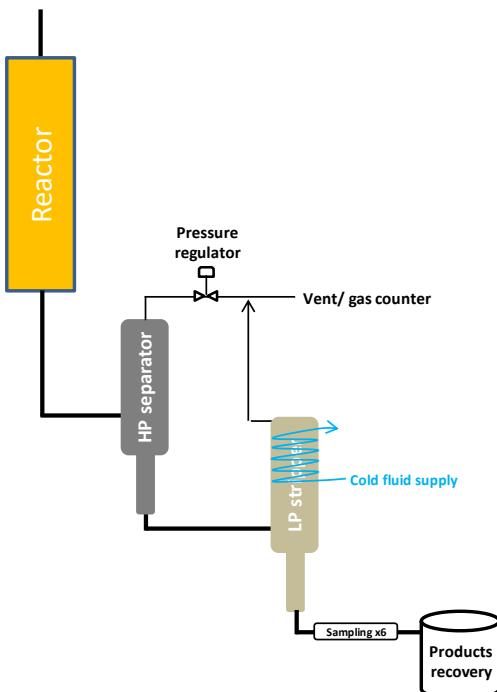
Both liquid phases recovered from the LP separator: water and hydrocarbons are sent to sampling systems and specific recovery vessels.

Recovery vessel Water	quantity	1
	Capacity	2 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales Water	quantity	1
	Range	0-6000 g
	Readability	0.1 g
Liquid sampling	quantity	1

Water	Vials volume	50cm ³
	Vials number	2

Recovery vessel	quantity	1
	Capacity	1 liters
	Material	Borosilicated Glass
Hydrocarbon	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales hydrocarbon	quantity	1
	Range	0-6000 g
	Readibility	0.1 g
Liquid sampling hydrocarbon	quantity	1
	Vials volume	50cm ³
	Vials number	3

The gas phase recovered at the top of the HP separator first goes through an **electronic back pressure regulator** to control reactor pressure and reduce effluent pressure in order to increase separation efficiency.


Back Pressure Regulator	quantity	1
	Body materials	SS316
	Design Temp.	70°C
	Operating temperature	Room temp.
	Max Regulating pressure	100barg
	specificity	Electronic regulation

The gas phase is then sent for counting to the wet gas meter, equipped with a thermocouple and a pressure transmitter for correction of the gas flow. This allows an accurate mass balance of the unit. The gas can be sent automatically to a **GC analyzer** (not included in Vinci's scope) for on line analysis.

Gas meter	quantity	1
	Maximum flowrate	500 l/h
	Design temperature	50°C
	Design pressure	0.05 barg (overpressure protected)

1.10.3. CO₂ Hydrogenation reactor Product Separation

Product separation section for CO₂ hydrogenation reactor train is described by below scheme

Figure 12. Schematic representation of the separation section

The outlet effluent from the reactor is routed to a high pressure separator for efficient gas/liquid separation. The separator is specifically designed for efficient disengagement of the gas phase while minimizing the entrainment of liquid particles. This separator is operated at room temperature.

High Pressure separator	quantity	1
	Material	SS 316 L
	Design pressure	120 barg
	Max Operating pressure	100 barg
	Design temperature	200°C
	Operating temperature	Room Temp.
	Liquid phase volume	20cm ³
	Separator total volume	80cm ³

The liquid phase is continuously recovered at the bottom of the HP separator under level control and sent to LP gas/liquid separator. HP Separator is equipped with a liquid level probe and liquid level control is achieved using an automatic on/off valve placed on the liquid line.

LP separator is specifically designed for low pressure gas & liquid products separation phase separation. To improve efficiency, separation temperature is controlled via a double jacket fed with chilled fluid supply from a chiller.

LP separator	quantity	1
	Material	SS 316 L
	Design pressure	10barg
	Operating pressure	Up to 5barg
	Design temperature	200°C
	Operating temperature	Room temp. top cooled by chilled fluid
	Liquid phases volume	20cm ³
	Separator total volume	80cm ³
	Specificity	Double jacketed

A common Thermostatic Bath located on pilot plant skid will be connected to each LP separators

Chiller	Quantity	1
	Brand & Model	Lauda & UC2
	Regulating temp.	-5 to room temp.
	Cooling power	2.5kW@15°C – 1.5kW@0°C
	Pump performance	3.4barg – 5.6l/min
	Cooling fluid volume	19liters

Liquid phase recovered from the LP separator is sent to a sampling system and specific recovery vessel.

Recovery vessel	quantity	1
	Capacity	1 liters
	Material	Borosilicated Glass
	Design Pressure	0.5 barg
	Design Temperature	200°C
	Operating Temperature	Room temperature
Weight scales	quantity	1
	Range	0-3500 g
	Readibility	0.1 g
Liquid sampling	quantity	1
	Vials volume	50cm ³
	Vials number	6

The gas phase recovered at the top of the HP separator first goes through an **electronic back pressure regulator** before being combined with gas effluent recovered from LP separator. Back pressure regulator allow a fine control of reactor operating pressure.

Back Pressure Regulator	quantity	1
	Body materials	SS316
	Design Temp.	70°C
	Operating temperature	Room temp.
	Max Regulating pressure	100barg
	specificity	Electronic regulation

The gas phase is then sent for counting to the wet gas meter, equipped with a thermocouple and a pressure transmitter for correction of the gas flow. This allows an accurate mass balance of the unit. The gas can be sent automatically to a **GC analyzer** (not included in Vinci's scope) for on line analysis.

Gas meter	quantity	1
	Maximum flowrate	500 l/h
	Design temperature	50°C
	Design pressure	0.05 barg (overpressure protected)

1.10.4. Vent header

The vent header system has been split into both a high pressure and a low pressure section, preventing excessive backpressure and/or reverse flow occurring in the event of a total system malfunction. Each section is provided with its own knock out pot (V-530 for HP) for the absorption of pressure shock in the event of failure, as well as to collect liquid condensate from the venting gas before the respective streams

enter the main plant header system. For the high pressure system this leads to a KO pot volume of 1 liter, and for the low pressure system, 2 liter.

1.11. MATERIALS AND FABRICATION SPECIFICATIONS

1.11.1. General

The unit meets industry standards for design, engineering, and fabrication. Modular construction is used for the skid structures. The unit skids are designed to be free standing. The process modules are arranged in the skid according to the various flow patterns thus allowing easy maintenance. All components are within the dimensions of the structural frame. Safe operation is assured through electronic temperature protection and mechanical pressure relief assemblies.

1.11.2. Equipment

Vinci-Technologies reserves the right to use its own provider list based on our extensive state of the art experience. If the client has special demands, a vendor list can be presented during the project but may lead to change orders if necessary. Included in the Vinci-Technologies Basic Engineering Design Package submitted for information will be a Process Bill of Materials which will list all of the equipment, instruments and valves in the unit. A list of preferred Vinci's supplier is represented on the table below:

Table 1. List of preferred Vinci Technologies's supplier

Instrument/equipment	Type	Brand
Mass Flow Controller	Thermal MFC	Bronkhorst
Mass Flow Meter	Coriolis MFM	Bronkhorst
Furnace	Vinci's design – heating multizone	Vinci Technologies
Pressure Regulator	Back pressure Regulator	Vinci Technologies
Gas meter	Weight or dry gas meter	Zeal or Bios
Weight scales	Precision scales	Adam
Fitting, valves & check valves	-	Ham-Let
Pressure Safety Valve		Ham-Let or Hoke

1.11.3. Materials of Construction

The primary wetted material of construction is 316 stainless steel. All process lines are constructed of 316 stainless steel compression fittings and seamless tubing. Soft sealing components in contact with utility fluids are dictated by good engineering practice. The structural members of the skid are primed and painted carbon steel. The material of construction for the reactors will be 316 stainless steel.

1.11.4. Spare Parts

Included in the scope of the project is a start up supply of consumable spare parts. Included are soft goods such as seals, gaskets, O-rings, fuses, etc., which may be required for replacement during initial start up and commissioning of the Unit. A list of spare parts recommended to have on hand for extended operation of the unit will be developed as part of the detailed design phase of the project.

1.11.5. On site implantation

The pilot plant main skid will have a height of about 2m. It will not be more than 2.0m large and 1m deep.

1.12. UTILITIES

It is assumed that the following utilities are available or can be provided:

Hydrogen

- Supply pressure is 110 barg minimum
- Consumption: up to 800NI/hr

Carbon monoxide

- Supply pressure is 110 barg minimum
- Consumption: up to 400NI/hr

Carbon dioxide

- Supply pressure is 110 barg minimum
- Consumption: up to 200NI/hr

Instrument Air

- Dew point is -30°C maximum
- Supply pressure is 6 barg minimum
- Max. consumption: to be determined

Section

1.9

CONTROL SYSTEM

The basic architecture of a pilot plant control system is extremely simple, highly functional, very cost-effective, and can be readily adapted to meet both elementary and complex process mission requirements.

The control system is essentially made up of two major sub-systems:

- A sub-system referred to as the **control cabinet interface** that consists of one or more hardware cabinets that contain all the devices required to enable full communication and intelligent two-way transfer of information between the pilot plant process system and analytical equipment on one side and the PC-based workstation on the other.
- A workstation that includes a high-powered PC, active and back-up memory, a flat screen monitor and a supervisory process control software package. Insofar as the human operator is concerned, the workstation is the routine point of entry into the process and analytical world of the pilot plant.

This process control configuration allows a highly reliable control of the operating parameters (temperature, pressure, gas flow-rates) for unattended operation. Additional information and selected technical details are provided below.

1.12.1. Workstation hardware

The pilot plant will be supervised by a distributed process control workstation system. The system consists of an engineering workstation managed by a control software. The control system software will be configured to the specific operating requirements of the demonstration plant. The process control system will be used for all process control applications.

The engineering workstation uses the Windows Seven Professional Operating system. The workstation is dedicated to process configuration, operator control, alarm management, trending, historical trending, data back-up, report generation and operator event chronicling. The historical database will support an Excel Add-in for rapid data analysis. This will allow the user to view and manipulate historically collected process data in Microsoft Excel.

PC specifications:

- Brand: probably DELL or HP
- USB ports & Ethernet port
- 23" TFT monitor
- Windows Ten Professional or up to date system.

1.12.2. Workstation software

The design package includes the initial configuration and test of user friendly software (Supervision package in Run Time version) for the data acquisition and supervision of the unit, based on unit requirements in order to provide continuous operation without additional configuration or programming:

- Acquisition of raw data measurements (temperature, pressure, gas flow rates, weighing scales, gas meter)
- Continuous display of measurements vs. time in the form of trends and value grids
- Logging of measurements in the computer for further compilations
- Printout facilities
- Supervision facilities displaying the general synoptic of the system and indicating the status of each main component, the values of the measurement and set points

Software specifications:

- Provider: Vinci-Technologies
- Product key points: it offers a robust SCADA engine, rich set of connectivity options, open architecture and highly scalable and distributed networking model. Used in a variety of applications, it is ideally suited for applications as simple as typical HMI applications such as manual data entry and validation to very complex SCADA applications like batching, filtration and distributed alarm management.

1.12.3. Control cabinet interface

The control cabinet is the interface between the computer control package and the unit. The cabinet contains the I/O modules for data acquisition, power supplies, solid state relays, and fuses and it is made of removable sides for easy access. The cabinet will have built into it alarms, switches (key switch, ON/OFF of heater), emergency stop pushbuttons. The control cabinet is directly installed on the unit mechanical skid.

Control cabinet interface support devices are:

- DC power supplies for enabling the transducers and transmitters.
- Power relays to interface the control cabinet interface with high power components of the process system (furnaces, motors, pumps, etc.). These relays are of the zero-voltage switching type. They turn "on" and "off" only when the AC cycle is passing through the zero voltage point. This avoids voltage spiking and electromagnetic interference. The power relays are mounted on heat sinks for limiting the rise in temperature of the solid state switch.
- Temperature Safety Switches (TSS)
- Indicator lights.

Ethernet coupler specifications:

- The control system provided by Vinci-Technologies is approved for extremely diverse laboratory applications. The system is optimized for process-oriented communication and is a scalable-performance solution for high integration density with a very high performance ratio. It is versatile and flexible with more than 300 different 1, 2, 4, 8-channel function modules available
- Interfaces are available for any size and type of automation task – from distributed I/O nodes or stand-alone control to global networks.
 - Bus couplers – standard for high I/O counts and economy for highly distributed applications
 - Controllers – 16 bit, 32 bit, and DIN rail mount IPCs for stand-alone, distributed, or master control

Section

1.10

SAFETY

The safety philosophy is based upon the assumption that the default condition of a system is one in which everything is working properly as planned. However, when a process unit begins to approach an undesirable condition, the appropriate safety action must be taken. This action is facilitated by an adequately designed and instrumented system.

Where required, the pressure vessels will be designed and fabricated in accordance with ASME Section VIII. Where required, the piping and tubing will be designed and fabricated in accordance with ANSI B31.3.

The design philosophy of the multi-level safety system, that includes six (6) independent tiers of action, is enunciated below:

Tier 1: Low-High Alarms Wrapped Around Transducers: Each transducer, whether it is sending temperature, flow, pressure, level, etc. signal information is equipped with low and high alarms. These alarm levels are typically set by the operator, and are based upon the nature of the experiments being conducted. This capability, that gives the user the ability to modify the low and high parameters, is extremely useful. Care has to be taken with the low alarms because this level has to be intercepted when the system is ascending or descending through these set-points during start-up or shutdown.

Tier 2: Low-Low and High-High Alarms: A second level of alarm logic that reflects component and equipment safety limitations, and can protect against extreme system runaway possibilities, is also incorporated within the safety design. These alarms are preprogrammed by the manufacturer, and should only be altered by the manufacturer or under the manufacturer's certification. Here again, the safety logic must provide for interception of the low-low alarms that must be bypassed when the system is ascending or descending through these set-points during start-up and shutdown.

Tier 3: Hardwired Switches (Analog and Digital): This is the fail-safe level of the safety design. In the event that an unwanted process condition occurs or develops, actions incorporated in this level will cause the system to revert into a pre-determined safe position. Some examples of these types of switch actions which may be used are noted below:

- A switch enables the computer to run continuously after an emergency shutdown, which means that valuable data can be logged for subsequent analysis and diagnostic review of the sequence of events.
- In the event that there is an unwanted decay in a designated flow, or in the system pressure, a switch enables an automatic nitrogen purge.
- All high temperature devices are equipped with independently wired Temperature Safety Switches (TSSs) that terminate power to the heating device if the noted temperature exceeds the High-High level, and for some reason Tier 1 and Tier 2 actions have not been executed.
- A switch to detect and take action if there is a loss of circulation air flow (option)
- A hydrogen (combustible gas) monitor/alarm switch, and/or a toxic gas alarm switch may be installed where leakage of these gases is possible (option)
- A switch that acts when a toxic or combustion gas concentration becomes higher than a preset value (option)

Tier 4: Watch Dog Relays: What if something goes wrong with the computer, which means that computer-controlled safety actions will not provide the necessary protection? The system includes a special "watch dog" relay that is refreshed by the computer once every second. If the computer fails to refresh this relay, this device automatically causes the process system to revert into designated safe mode within "x" seconds after this failure-to-refresh event occurs. "x" can be adjusted by a potentiometer within a typical range of 5-45 seconds.

Tier 5: Emergency Palm Stop Switch: This switch is installed in a readily accessible location whereby the operator can slap this device to affect an emergency shutdown of the entire system. This switch can also be used to take final action prior to the rapid evacuation of the facility, and may be linked to other types of alarm systems such as visible and/or audible alarms.

Tier 6: This level incorporates two kinds of mechanical devices into the safety system, which may be used either independently or in conjunction with each other depending upon the design of the system and a safety review of the process:

- Pressure Relief Valves (PSV) are designed to relieve excess pressure at a designated setpoint. Normal hysteresis for the reset of a typical pressure relief valve is $\pm 10\%$ of the set-point.
- Rupture Discs (PSE) are intended to provide a back-up in the event that a relief valve (PSV) malfunctions, and/or if the hysteresis of the relief valve (PSV) has decayed to a point where its operation is no longer repeatable. In any event, a PSE is the final and ultimate device that protects a process system from an unwanted increase in pressure.

The alarm strategy and associated safety actions will be submitted to approval by the client.

Section

1.11

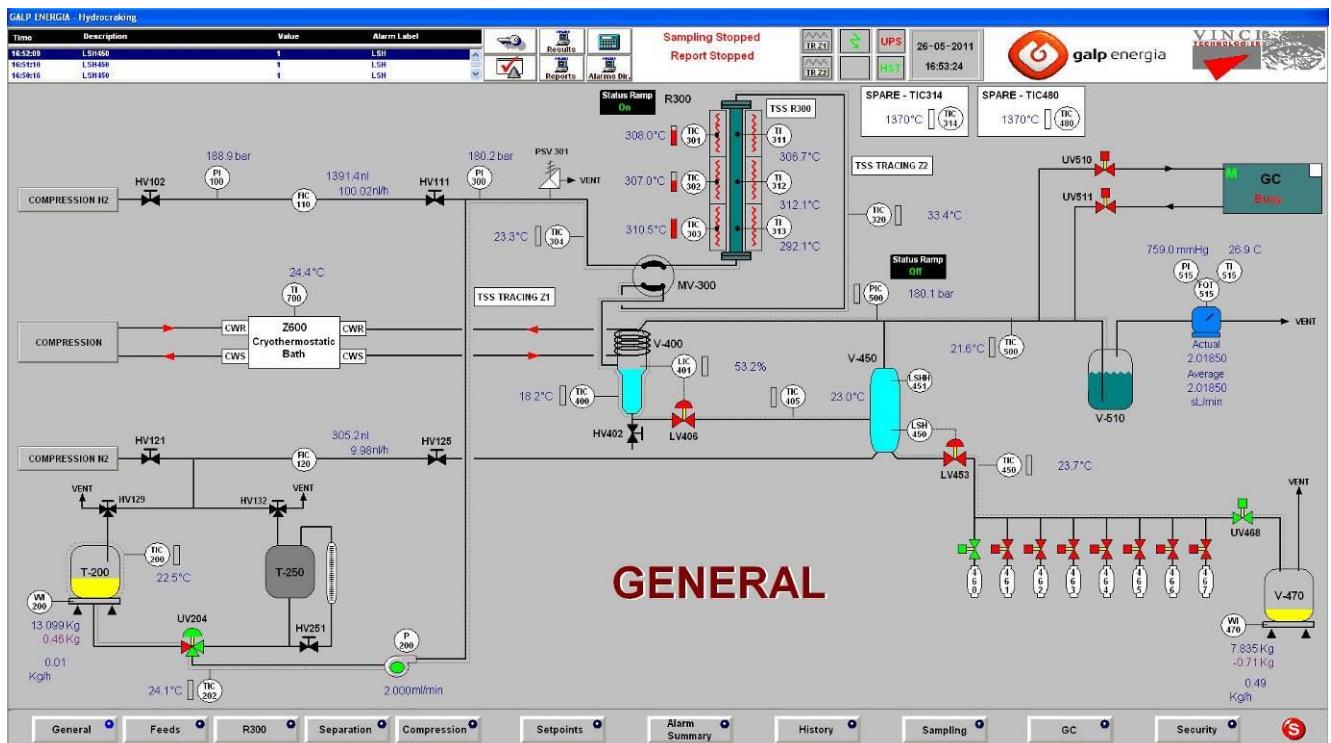
• ELECTRICAL SPECIFICATIONS

Electrical codes and explosion proof requirements vary significantly by country, and even within one country, regional and local regulations often supersede national standards. However, in general, the designation of the appropriate electrical specifications is primarily governed by essential technical issues such as 1) the nature of the intended application, 2) the kind of environment within which the pilot plant will be operated in, 3) the chemical and physical properties of the feedstocks (process inputs), and 4) the chemical and physical properties of the products and byproducts (process outputs).

1.14.1. Electrical classification

The pilot plant will be designed for installation and operation in a general purpose (non-explosion proof) electrically classified area. All components, electrical wiring and conduits will conform to the appropriate specification.

The maximum distance between the process unit and the interface cabinet is 0 meters, as the control & electrical cabinets are directly located on the main skid. If this distance is exceeded, additional costs for cable materials may be charged to the customer. The use of intrinsically safe barriers has not been included in the proposed system. This matter is usually addressed and contracted as a separate design issue.


1.14.2. Electrical specifications

- 50 Hz compatible
- Phase neutral voltage : 230 volts
- 3 phase systems available

1.15. SUPERVISION EXAMPLES

1.15.1. Unit Overview

1.15.2. Set point details

1.15.3. Historical display (pressures)

GALP ENERGIA - Hydrocracking

Time	Description	Value	Alarm Label
17:15:56	LSH056	1	LSH
17:15:56	LSH156	1	LSH
17:15:55	LSH456	1	LSH

Sampling Stopped
Report Stopped
IB1A
IB2A
UPS

IB1B
IB2B
HST

26-05-2011
17:17:13

galp energia
VINCI
TECHNOLOGIES

Export CSV
17:17:13
179.8
191.5
179.9

Historical Trend - PRESSURES

PRESSURES Thursday, May 26, 2011

PT500 PV
Bar 250.0

PT100 PV
Bar 225.0

PT150 PV
Bar 200.0

175.0

150.0

125.0

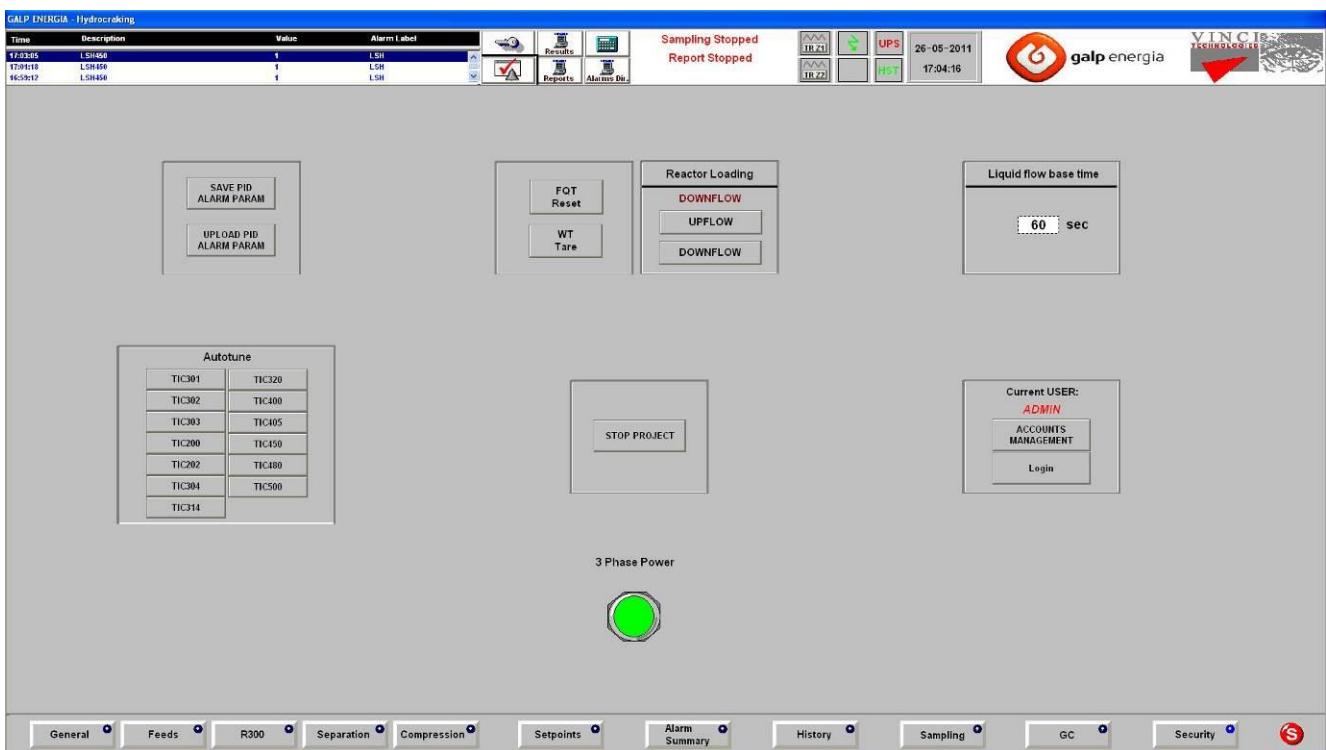
100.0

75.0

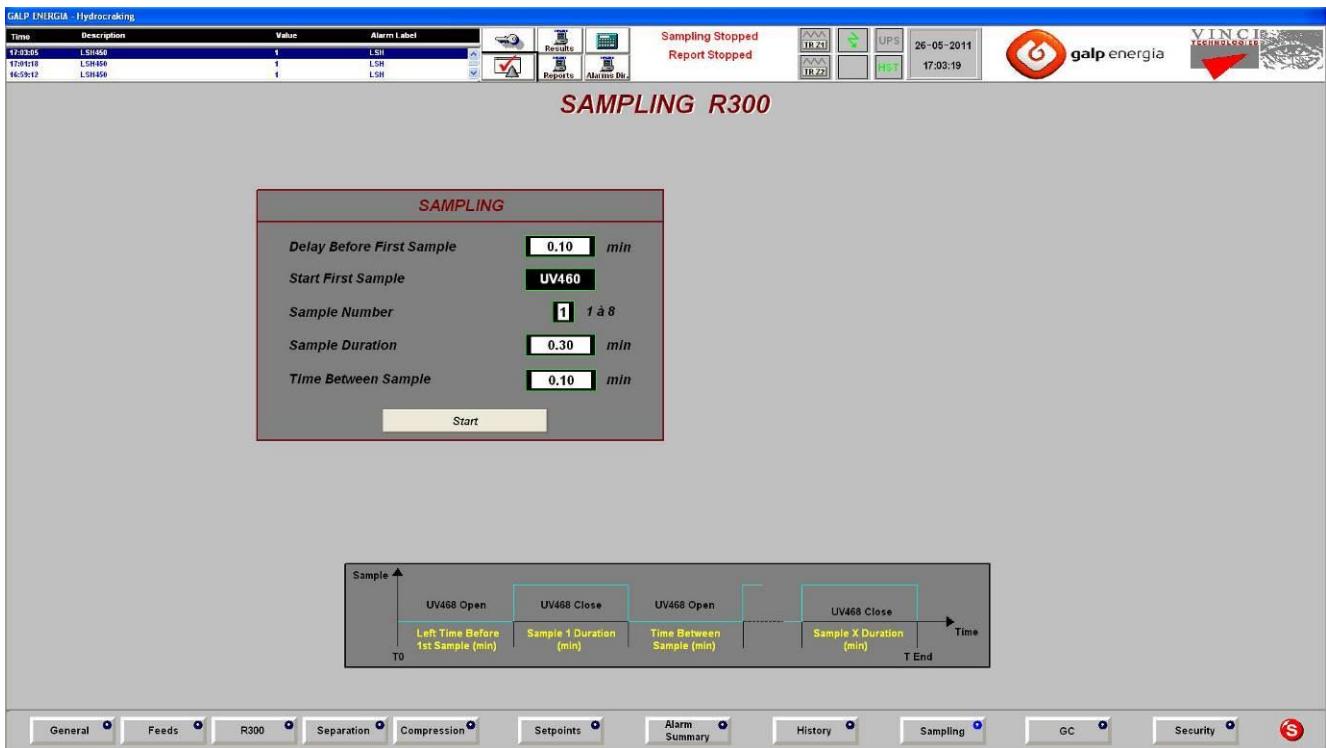
50.0

25.0

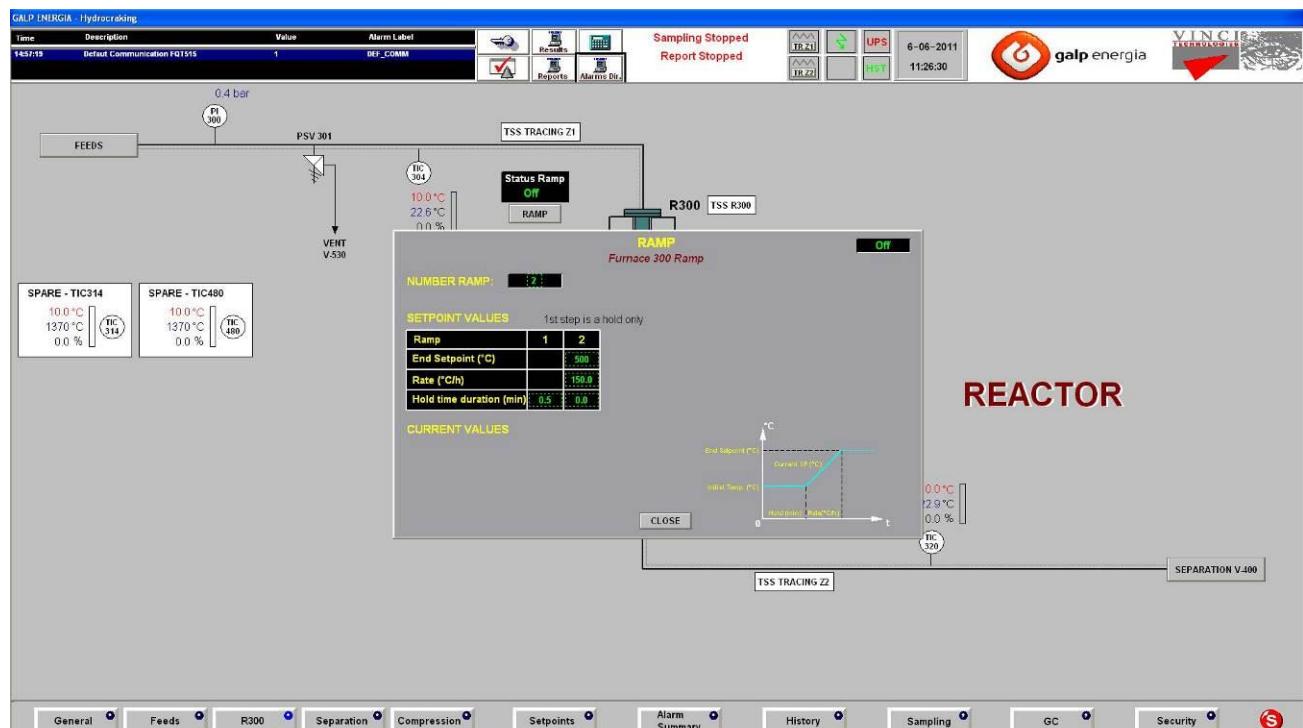
0.0


11:17:13 12:02:13 12:47:13 13:32:13 14:17:13 15:02:13 15:47:13 16:32:13 17:17:13

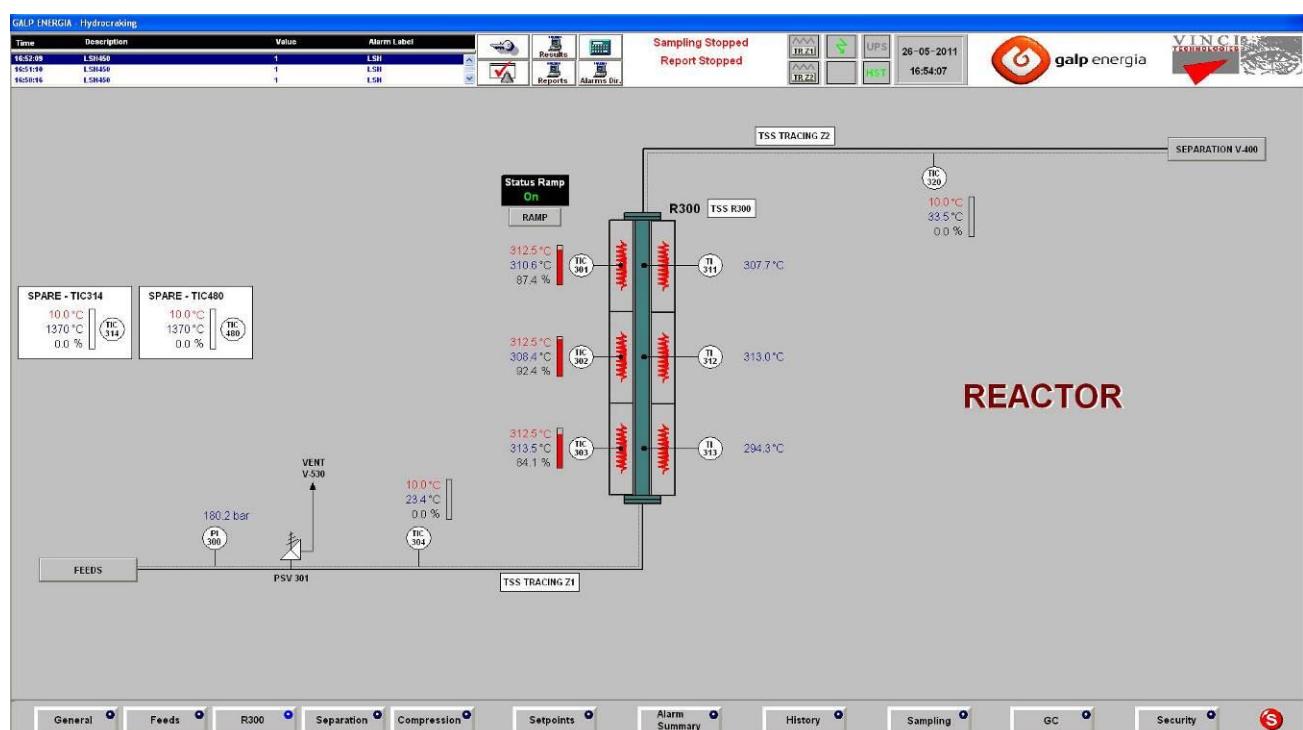
CLOSE


General Feeds R300 Separation Compression Setpoints Alarm Summary History Sampling GC Security S

1.15.4. Admin menu

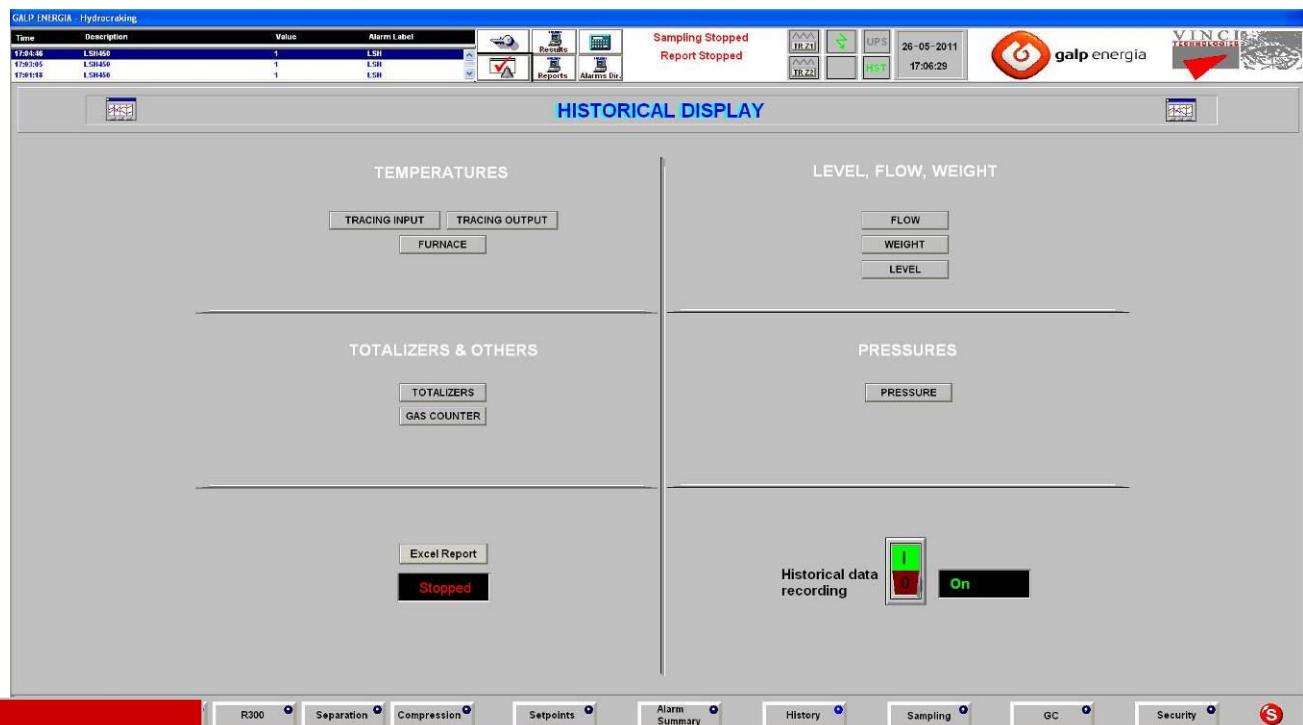


1.15.5. Sampling menu



1.15.6. Temperature Ramp

REACTOR


1.15.7. Reactor Rx-1400 display

REACTOR

1.15.8. Historical display

Section